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1. UNIT SYLLABUS 

 

UNIT –III: Magnetic Effects of Current and Magnetism,                   10 Modules 

Chapter-4: Moving Charges and Magnetism 

Concept of magnetic field; Oersted’s experiment. 

Biot - Savart law and its application to current carrying circular loop. 

Ampere’s law and its applications to infinitely long straight wire; Straight and toroidal solenoids, Force on a 

moving charge in uniform magnetic and electric fields; Cyclotron. 

Force on a current-carrying conductor in a uniform magnetic field. Force between two parallel current-

carrying conductors-definition of ampere. Torque experienced by a current loop in uniform magnetic field; 

moving coil galvanometer-its current sensitivity and conversion to ammeter and voltmeter. 

Chapter-5: Magnetism and Matter 

Current loop as a magnetic dipole and its magnetic dipole moment. Magnetic dipole moment of a revolving 

electron. Magnetic field intensity due to a magnetic dipole (bar magnet) along its axis and perpendicular to 

its axis. Torque on a magnetic dipole (bar magnet) in a uniform magnetic field; bar magnet as an equivalent 

solenoid, magnetic field lines; Earth’s magnetic field and magnetic elements. 

Para-, dia- and ferro - magnetic substances, with examples; Electromagnets and factors affecting their 

strengths; Permanent magnets. 

2. MODULE WISE DISTRIBUTION OF UNIT SYLLABUS   10 Modules  

The above unit has been divided into 10 modules for better understanding  

 

Module 1  Introducing moving charges and magnetism 

 Direction of magnetic field produced by a moving charge  
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 Concept of Magnetic field  

 Oersted’s Experiment 

 Strength of the magnetic field at a point due to current carrying  

conductor  

 Biot-Savart Law 

 Comparison of coulomb’s law and Biot Savarts law   

Module 2  Applications of Biot- Savart Law to current carrying circular loop,  

straight wire 

 Magnetic field due to a straight conductor of finite size  

Examples  

Module 3  Ampere’s Law and its proof  

 Application of Ampere's circuital law: straight wire, straight and  

toroidal solenoids. 

 Force on a moving charge in a magnetic field  

 Unit of magnetic field  

Examples  

Module 4  Force on moving charges in uniform magnetic field and uniform  

electric field. 

 Lorentz force  

 Cyclotron 

Module 5  Force on a current carrying conductor in uniform magnetic field 

 Force between two parallel current carrying conductors 

 Definition of ampere 

Module 6  Torque experienced by a current rectangular loop in uniform magnetic 

 field 

 Direction of torque acting on  current carrying rectangular loop in uniform 

magnetic field 

 Orientation of a rectangular current carrying loop in a uniform  

magnetic field for maximum and minimum potential energy  
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Module 7  Moving coil Galvanometer- 

 Need for radial pole pieces  to create a uniform magnetic field  

 Establish a relation between deflection in the galvanometer and the  

current its current sensitivity  

 Voltage sensitivity 

 conversion to ammeter and voltmeter 

Examples  

Module 8  Magnetic field intensity due to a magnetic dipole (bar magnet) along  

its axis and perpendicular to its axis. 

 Torque on a magnetic dipole in uniform magnetic field. 

 Explanation of magnetic property of materials  

Module 9  Dia, Para and Ferro-magnetic substances with examples. Electromagnets 

 and factors affecting their strengths, permanent magnets. 

Module 10  Earth’s magnetic field and magnetic elements. 

 

Module 3  

3. WORDS YOU MUST KNOW 

 Coulomb’s law: The mutual force of attraction or repulsion between two point charges is directly 

proportional to the product of two charges (q1 and q2) and inversely proportional to the square of the 

distance between them. It acts along the line joining them. 

 

 Electric current: The time rate of flow of charge in a conductor. 

 

 Magnetic field  region around a magnet , current carrying conductors or moving charges where the 

magnetic effect is experienced by a compass needle  

 Magnetic field lines: it is a curve, the tangent to which a point gives the direction of the magnetic field at 

that point. 
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 Maxwell’s corkscrew rule or right hand screw rule: It states that if the forward motion of an imaginary 

right handed screw is in the direction of the current through a linear conductor, then the direction of 

rotation of the screw gives the direction of the magnetic lines of force around the conductor. 

 

 Biot-Savart law: According to Biot-Savart law, the magnetic field dB at P due to the current element idl 

is given by   

dB =
𝜇0𝐼𝑑𝑙 𝑠𝑖𝑛𝜃

𝑟2
 

 Right hand thumb rule or curl rule: If a current carrying conductor is imagined to be held in the right 

hand such that the thumb points in the direction of the current, then the tips of the fingers encircling 

the conductor will give the direction of the magnetic lines of force. 

4. INTRODUCTION: 

In unit 1 on electrostatics, we discussed two approaches for calculating the electric field Coulomb's law 

and Gauss’s law. There are  several ways to calculate the magnetic field produced by a current. 

 

One approach is the Biot Savart’s Law, which, similar to Coulomb’s law, treats each small segment  of 

wire as a separate source of magnetic field B, but can be  is mathematically complicated.  

Another approach, which was proposed by Ampere, and known as Ampere’s circuital law, is very 

useful when magnetic field lines have a simple symmetry. 

This is similar to Gauss’s law in electrostatics for determining the electric fields, which was most useful when 

the electric field is highly symmetrical. 

Ampere’s circuital law is an alternative and appealing way in which the Biot-Savart law can be 

expressed. The purpose of the law is to find the value of magnetic field at a location from a current carrying 

conductor, if the magnetic field is symmetrical. 

 

In this module we will learn about Ampere’s circuital law and use some examples of symmetrical fields 

like those around a straight conductor and a circular loop with steady current to find the magnetic 

field. 
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5. AMPERE'S CIRCUITAL LAW 

 

This law, given by Ampere, provides us with an alternative way of calculating the magnetic field due to a 

given current distribution. 

As said before, this law, is, in a way, similar to the Gauss’s law in electrostatics, which again provides us with 

an alternative way of calculating the electric field due to a given charge distribution. 

 

Ampere’s circuital law can be written as: 

The line integral of the magnetic field around some closed loop is equal to μ0 times the algebraic sum of 

the currents which pass through the loop. 

So let us attempt to understand what is meant by:  

 line integral 

 closed loop  

 algebraic sum of currents  

 

 

 

 

 

 

 

 

   

 

 

The figure shows the magnetic field around a current carrying conductor. From our previous 

knowledge we take the conventional direction of current (from +ve to –ve), the red concentric 

circles represent the magnetic field in a plane perpendicular to the wire  
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From Biot Savart’s Law, B is inversely proportional to the square of the distance from the source to 

the point of interest  

The source of the field is a vector given by Idl or the magnetic field is produced by a vector source I dl. 

 The magnetic field is perpendicular to the plane containing the displacement vector r and the current element 

I dl. 

There is angle dependence in the Biot-Savart law which is not present in the electrostatic. Consider the 

diagram  

 

 

     

 

The magnetic field at any point in the direction of dl (the dashed line) is zero.  

Along this line, 

Θ = 0, sin θ = 0 and therefore, |dB| = 0. 
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Amperes’ circuital law makes the calculation of B easier in many cases: 

 

Consider a long straight current carrying wire encircled by magnetic field lines and imagine travelling 

around a closed path that also encircles the wire   

Ampere’s law relates the magnetic field along the path to the electric current enclosed by this path 

 

 

 

Let us travel along the path taking steps of length ∆l and let B   be the component of the magnetic field 

parallel to these steps. 

 

According to ampere’s law over the entire closed loop, which we have taken as a circular loop  
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 ∑ 𝐁. ∆𝐥 = µ𝟎  𝐈 

 

In simple terms law relates the magnetic field on the perimeter of the region to the current that passes 

through the region. 

How big should our step be to estimate B easily? it should be as small as possible. 

 

So, 

Let each such step be an element of length dl. This is a vector as we would move clockwise or 

anticlockwise. 

 

We take the value of the tangential component of the magnetic field, BT at this element and multiply it by 

the length of that element dl.  

BT is also a vector; hence it is a product of two vectors. 

 

The right hand side of the equation is a scalar- product of permeability and magnitude of current  

Hence it is a case of dot product or scalar product. 

NOTE: 

 BT. dl = B dl cos θ  = BT dl      as θ  = 0 

 

All such products are added together. 

 We consider the limit as the lengths of elements get smaller and smaller making their number larger. The 

sum then tends to an integral.  

 

Ampere’s law states that this integral is equal to µ0 times the total current. 

 

∫ 𝐁. 𝐝𝐥 = µ𝟎   𝐈  

 

It is often written as line integral of B.dl 
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∮ 𝑩. 𝒅𝒍 = µ𝟎 𝐈  

Where I is the total current through the boundary of a surface. The integral is taken over the closed 

loop.  

 

The relation above involves a sign-convention, given by the right-hand grip rule or Maxwell’s cork 

screw rule  

 

Let the fingers of the right-hand be curled in the sense the boundary is traversed in the loop integral 

B.dl.  

Then the direction of the thumb gives the sense in which the current I is regarded as positive. 

 

In general, for several applications, a much simplified version of the above equation proves sufficient. We 

shall assume that, in such cases, it is possible to choose the loop (called an amperian loop) such that at each 

point of the loop, either 

 

(i) B is tangential to the loop and is a non-zero constant B,  

(ii) B is normal to the loop, or 

(iii) B vanishes. 

 

Now, let L be the length of the loop for which B is tangential. 

 

 Let I be the current enclosed by the loop. 

 

Then, the above equation reduces to, 

 

     BL = µ0 I 
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When there is a system with symmetry such as that for a straight infinite current-carrying wire in Figure, the 

Ampere’s law enables an easy evaluation of the magnetic field, much the same way Gauss’ law helps in 

determination of the electric field. 

 

The boundary of the loop chosen is a circle and magnetic field is tangential to the circumference of the 

circle. 

 

The boundary can be of any shape but its perimeter is not easily predictable as in the case of a circular 

boundary where it is the circumference of the circle = 2πr  

 

 The law gives, for the left hand side B. 2πr 

 

We find that the magnetic field at a distance r outside the wire is tangential and given by 

 

     B. 2πr. = µ0 I 

Or  

 

     B = µ0 I/2πr. 

 

So far we have taken care of what is meant by closed loop, line integral and why a circular amperian 

loop is advantageous for calculation of perimeter of the closed loop. 

Also notice we get the same result as that by using Biot Savart’s law  

 

Now what is meant by algebraic sum of currents?  
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Figure shows four current elements and an amperian loop engulfing all four  

 

In the figure the amperian loop has four straight conductors say each with a current of 2 A but in 

different directions  net algebraic sum of currents = 0 while total current = 4 × 2 A  

We have to consider the algebraic sum of the current within the amperian loop 

So the magnetic field at any point on the loop will be 0. 

 

THINK ABOUT THESE  

 All the conductors carry current yet the field is zero? 

 What if the current in individual wires was not the same but say I1 , I 2, I3 , I 4  ? 

 If the conductors were at different angles with each other, can we still apply amperes law? 

 Why is symmetry important for simple application of ampere’s circuital law? 

 

6. AMBIGUITIES AND SIGN CONVENTIONS 

There are a number of ambiguities in the above definitions that require clarification and a choice of 

convention. 

 Three of these terms are associated with sign ambiguities:  

 the line integral ∮C could go around the loop in either direction (clockwise or 

counterclockwise);  

 the vector ∆l  or dl could point in either of the two directions along the loop  
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  Ienc is the net current passing through the loop, meaning the current passing through in 

one direction, minus the current in the other direction—but either direction could be 

chosen as positive.  

These ambiguities are resolved by right hand grip rule as discussed earlier  

Right hand grip rule  

Grasp the wire in your right hand with your extended thumb pointing in the direction of the current. 

Your fingers will curl around in the direction of the magnetic field. 

 

 

 

 

        So how do we choose an amperian loop? 

 

 There are infinitely many possible surfaces S that have a boundary curve C as their border 

making up the loop  

 Imagine a soap film on a wire loop, which can be deformed by moving the wire.  

Which of those surfaces is to be chosen? 

 If the loop does not lie in a single plane, for example, there is no one obvious choice.  

The answer is that it does not matter; it can be proved that any surface with boundary C can be chosen. 

But the calculation of the perimeter of the boundary will not be obvious. 
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ANALYSIS OF RESULT OF B DUE TO A CURRENT CARRYING CONDUCTOR OF INFINITE 

LENGTH  

B = µ0 I/2πr. 

The above result for the infinite wire is interesting from several points of view. 

(i) It implies that the field at every point on a circle of radius r, (with the wire along the axis), is same 

in magnitude. In other words, the magnetic field possesses what is called a cylindrical symmetry. 

The field that normally can depend on three coordinates depends only on one: r. Whenever there 

is symmetry, the solutions simplify 

 

(ii) The field direction at any point on this circle is tangential to it. Thus, the lines of constant 

magnitude of magnetic field form concentric circles.  

 

View video on NROER 

 

Notice now the iron filings form concentric circles. 

 

 These lines called magnetic field lines form closed loops. This is unlike the electrostatic field lines which 

originate from positive charges and end at negative charges. The expression for the magnetic field of a 

straight wire provides a theoretical justification to Oersted’s experiments. 
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(iii) Another interesting point to note is that even though the wire is infinite, the field due to it at a 

nonzero distance is not infinite. It tends to blow up only when we come very close to the wire.  

 

(iv) The field is directly proportional to the current and inversely proportional to the distance from 

the (infinitely long) current source. There exists a simple rule to determine the direction of the 

magnetic field due to a long wire. This rule, called the right-hand rule*, is: Grasp the wire in your 

right hand with your extended thumb pointing in the direction of the current. Your fingers will curl 

around in the direction of the magnetic field. 

 

(v) Ampere’s circuital law is not new in content from Biot-Savart law, both relate the magnetic field 

and the current, and both express the same physical consequences of a steady electrical current.  

 

  Ampere’s law is to Biot-Savart law, what Gauss’s law is to Coulomb’s law. Both, Ampere’s and Gauss’s 

laws relate a physical quantity on the periphery or boundary (magnetic or electric field) to another physical 

quantity, namely, the source, current or charge  

 

We also note that Ampere’s circuital law holds for steady currents which do not fluctuate with time in 

this form. For fluctuating currents, we will need to modify our considerations. 

 

7. AMPERE’S CIRCUITAL LAW FACTS  

 Ampere's circuital law in magnetism is analogous to Gauss's law in electrostatics 

 This law is also used to calculate the magnetic field due to any given current distribution 

This law states that: 

  The line integral of resultant magnetic field along a closed plane curve is equal to μ0 time 

the total current crossing the area bounded by the closed curve provided the electric field 

inside the loop remains constant" Thus 

 

  ∮ 𝑩. 𝒅𝒍 = µ
𝟎 

𝐈𝐞𝐧𝐜  

where  
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μ0 is the permeability of free space  

 Ienc is the net current enclosed by the loop as shown below in the figure 

 

 

  

 

 The symbol “∮ 𝑩. 𝒅𝒍” means that scalar product B.dl is to be integrated around the closed loop 

known as amperian loop whose beginning and end point are same 

 

 Anticlockwise direction of integration as chosen in the above figure is an arbitrary one. We can 

also use clockwise direction of integration for our calculation depending on our convenience 

 

 To apply the ampere's law we divide the loop into infinitesimal segments dl and for each 

segment, we then calculate the scalar product of B and dl 

 

 B in general varies from point to point so we must use B at each location of dl 

 

 Amperian Loop is usually an imaginary loop or curve, which is constructed to permit the 

application of ampere's law to a specific situation 

 

Ampere’s law, as stated above, provides us with an easy, quick and convenient way of calculating the 

line integral of the magnetic field over a given closed path or loop. We only need to know, or calculate, 

the (net) current enclosed by that loop.  
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However we need to know the magnetic field itself, rather than just a value of its ‘line integral’. 

Therefore, we need a special closed path for which one can calculate the magnetic field, rather than just 

its line integral using the circuital law. The choice of such a (special) closed path becomes possible only 

for a limited range of current distributions that have some sort of symmetry or ‘idealization’ associated 

with them. 

 

 

Ampere’s circuital law, therefore, is a handy tool for calculating the magnetic field only for a (very 

much) limited range of current distributions. This ‘built in’ limitation of this law restricts its use in 

practical situations. 

   

8. PROOF OF AMPERE'S LAW: 

This part of the module is not required for evaluation purpose; however it helps us understand the 

rationale behind ampere’s circuital law giving its importance   

Consider a long thin wire carrying a steady current I. Suppose that the wire is orientated such that the current 

flows along the positive z-axis. Consider some closed loop ‘C’ in the x-y plane which circles the wire in an 

anti-clockwise direction, looking down the z-axis. Suppose that dl is a short straight-line (…Explain) element 

of this loop. Let us form the dot product of this element with the local magnetic field B. Thus,  

     B. dl=B dl cosθ 

 

where θ is the angle subtended between the direction of the line element and the direction of the local 

magnetic field. 

 

 We can calculate a ‘dw’ for every line element which makes up the loop ‘C’. If we sum all of the ‘dw’ values 

thus obtained, and take the limit as the number of elements goes to infinity, we obtain the line integral  

 

𝑑𝑤 = 𝐵. 𝑑𝑙 = 𝐵. 𝑑𝑙𝑐𝑜𝑠𝜃 

𝑤 = ∮ 𝐵 . 𝑑𝑙  
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What is the value of this integral?  

 

In general, this is a difficult question to answer. However, let us consider a special case. 

 Suppose that ‘C’ is a circle of radius r centered on the wire.  

 

In this case, the magnetic field-strength is the same at all points on the loop.  

In fact, from Biot Savart’s law, 

𝐵 =
µ

0
𝐼

2𝜋𝑟
 

 

Moreover, the field is everywhere parallel to the line elements which make up the loop.  

Thus,  

 

     𝑤 = 2𝜋𝑟 𝐵 = µ
0

𝐼  

 

or  

 

     ∮ 𝐵. 𝑑𝑙 = µ
0

𝐼  

 

In other words, the line integral of the magnetic field around some circular loop  C, centered on a current 

carrying wire, and in the plane perpendicular to the wire, is equal to  µ
0

 times the current flowing in the wire. 

 

 Note that this answer is independent of the radius r of the loop: i.e., the same result is obtained by taking the 

line integral around any circular loop centered on the wire. 

In 1826, Ampere demonstrated that Equation  

∮ 𝐵. 𝑑𝑙 = µ
0

𝐼 
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This equation holds for any closed loop which circles around any distribution of currents (need not imagine 

the currents to be at its centre). Thus, Ampere’s circuital law can be written as: 

The line integral of the magnetic field around some closed loop is equal to the µ0 times the algebraic sum of 

the currents which pass through the loop. 

 

Ampere’s circuital law is to magneto statics (the study of the magnetic fields generated by steady currents) 

what Gauss' law is to electrostatics (the study of the electric fields generated by stationary charges).  

Like Gauss's law, Ampere’s circuital law is particularly useful in situations which possess a high degree of 

symmetry. 

9. MAGNETIC FIELD INSIDE A LONG STRAIGHT WIRE CARRYING STEADY CURRENT  

All the above discussion was for magnetic field at a distance away from the center of the wire, obviously 

outside the wire 

But is there a magnetic field within the wire? We can use Ampere’s law to determine the magnetic field 

inside the wire. 

Assuming  

 The current must be through a wire of uniform cross section  

 The current density should be uniform 

 The material of the straight wire should be homogeneous with the same resistivity  

For this let us imagine a conductor wire through which a current I flows so we have a long straight wire 

of a circular cross-section (radius a) carrying steady current I. 

The current I is uniformly distributed across this cross-section.  

Let us calculate the magnetic field in the region 

i) r > a and  
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ii) r < a 

 

(i) Consider the case r > a. The Amperian loop, labeled 2, is a circle concentric with the cross-section. For 

this loop, 

L = 2 π r 

Ie = Current enclosed by the loop = I 

The result is the familiar expression for a long straight wire 

𝐁 =
µ𝟎𝐈

𝟐𝛑𝐫
  

𝐁 ∝
𝟏

𝐫
  

ii) Consider the case r < a. The amperian loop is a circle labeled 1. For this loop, taking the radius of the circle 

to be r, 

 

Now the current enclosed Ie is not I, but is less than this value. 

Since the current distribution is uniform, the current enclosed is, 

𝐼𝑒 = 𝐼 (
𝜋𝑟2

𝜋𝑎2
) =

𝐼𝑟2

𝑎2
 

Using Amperes law  

𝐵(2𝜋𝑟) = 𝜇0
𝐼𝑟2

𝑎2   
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B = (
𝝁𝟎𝑰

𝟐𝝅𝒂𝟐) 𝒓 

B ∝ 𝑟                     (𝑟 < 𝑎) 

The above result can be represented graphically  

    

THINK ABOUT THESE  

 What if the wire was not uniform? 

 What if the wire was not homogeneous? 

 What if we had a collection of thin wires bundled together?  

 What if the cross section of the wire is not circular or the wire is not cylindrical? 

 What is the value of magnetic field at the centre of the wire due to current flowing through it? 

 Where is the magnetic field maximum? 

10. APPLICATIONS OF AMPERE'S CIRCUITAL LAW 

 

We have determined the magnetic field intensity due to current carrying straight conductor of infinite length 

by applying Biot-Savart's law. However in symmetric cases it is more convenient to use Ampere’s law for 

determining the magnetic field. Here we shall try Ampere's law to obtain magnetic fields. 

i) MAGNETIC FIELD AROUND A LONG STRAIGHT CONDUCTOR 
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Consider a straight long conductor carrying steady current I. In order to find the magnetic field at a point P at 

a distance r from the conductor, consider a circular path containing the point with the conductor as axis.  

As the magnetic field at all points on the circular path is tangential and of the same magnitude we get Line 

integral of B.dl equal to B × (line integral of dl) =B × 2πr   

The result is same as that of equation.    

      B. 2πr = µ0 I 

 

      B = µ0 I/2πr. 

    Watch Videos\PHYSICS XII CH4 EP2.mp4 

ii) MAGNETIC FIELD INSIDE A STRAIGHT CONDUCTOR CARRYING STEADY 

CURRENT  

a) At a location at a distance r from the center of the coil r >>a the radius of the wire  

      𝐵 =
µ0𝐼

2𝜋𝑟
  

b) At a location at a distance ‘r’ from the center of the cylindrical wire of radius ‘a’  

      B = (
𝜇0𝐼

2𝜋𝑎2) 𝑟 

     B ∝ 𝑟                     (𝑟 < 𝑎) 

iii) MAGNETIC FIELD AT THE CENTER OF A CIRCULAR COIL 

 It should be noted that while Ampere’s circuital law holds for any loop, it may not always 

facilitate an evaluation of the magnetic field in every case. 

 

 For example, for the case of the circular loop of radius R, carrying a current = I. As discussed earlier it cannot 

be applied to extract the simple expression. 

about:blank
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In this case, using Ampere’s circuital law is very difficult and instead of making our calculations 

simpler, it makes it really hard. 

 

      

      𝐁 =
µ𝟎𝐈

𝟐𝐑
  

 

For the magnetic field B at the centre of the loop.  

 

However, there exist a large number of situations of high symmetry where the law can be conveniently 

applied. 

 

iv) MAGNETIC FIELD DUE TO A STEADY CURRENT IN A SOLENOID 

What is a solenoid? 

A current carrying uniform wire wound in the form of coil or a helix is called solenoid. 

 In fact it is a combination of a number of circular coils spread over a length. Now let us investigate the 

magnetic field due to a solenoid.  
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A solenoid of definite length behaves exactly in the same way as that of a bar magnet. 

The figure shows this behavioral resemblance with iron filings around a current carrying solenoid  

      

However if we consider an infinitely long solenoid, it has been established experimentally that, the magnetic 

field inside the solenoid is uniform and the magnetic field outside the solenoid vanishes.  

      

Let us now derive the expression for the magnetic field due to the current in the solenoid. 
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Figure displays the magnetic field lines for a finite solenoid.  

 We show a section of this solenoid in an enlarged manner in Fig. (a). 

 Figure (b) shows the entire finite solenoid with its magnetic field. 

 In Fig. (a), it is clear from the circular loops that the field between two neighboring turns 

vanishes.  

 In Fig.(b), we see that the field at the interior mid-point P is uniform, strong and along the axis 

of the solenoid. 

 The field at the exterior mid-point Q is along the axis of the solenoid with no perpendicular or 

normal component.  

 This field outside the solenoid is weak and approaches zero. 

 

 We shall assume that the field outside is zero. The field inside becomes parallel to the axis everywhere. 

Direction of field B- from south to north inside the solenoid - given by right hand grip rule  
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Let us now determine the magnetic field due to an infinitely long solenoid. 

Consider an infinitely long solenoid of n turns per unit length 

We can imagine a rectangular amperian loop abcd.  

 

    

 

Along cd the field is zero as argued above. 

For, if you assume that the current in individual loops have no component along the direction of the axis of 

the loop. 

Along transverse sections b c and a d, the field component is zero. Thus, these two sections make no 

contribution.  
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Let the field along ab be B. Thus, the relevant length of the amperian loop is, L = h. 

 

If n is the number of turns per unit length, then the total number of turns is n h. 

 

 The enclosed current is, Ie = I (n h), where I is the current in the solenoid, since current in each loop 

adds up to total enclosed current within the amperian loop. 

 

From Ampere’s circuital law   

 

     BL = µ0 I 

      B h = µ 0 I (n h) 

 

     B = µ 0 I n  

 

The direction of the field is given by the right-hand rule.  

The solenoid is commonly used to obtain a uniform magnetic field.  

 

If the core (space inside the solenoid coil) of the solenoid is filled with a medium of relative permeability µr, 

then the above equation is modified as  

     B = µo µr n I 

The above expression makes it clear that the magnetic field inside a long solenoid is  

 uniform  

 depend on the number of turns per unit length, 

  current in the solenoid  

  Medium of the core. 

v)  MAGNETIC FIELD DUE TO A STEADY CURRENT IN A TOROID 
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The Toroid is a hollow circular ring on which a large number of turns of a wire are closely 

wound. It can be viewed as a solenoid which has been bent into a circular shape 

to close on itself. 

 

 

 

Finding the magnetic field inside a Toroid is a good 

example of the power of Ampere’s law, the circuit 

enclosed by the dashed amperian loop. 

It is shown in Fig. (a) carrying a current I. We shall see 

that the magnetic field in the open space inside (point P) 

and exterior to the Toroid (point Q) is zero. The field B 

inside the Toroid is constant in magnitude for the ideal 

Toroid of closely wound turns. Fig (b) shows a sectional 

view of the Toroid.  

The direction of the magnetic field inside is clockwise as 

per the right-hand thumb rule for circular loops.  

 

 

Three circular amperian loops 1, 2 and 3 are shown 

by dashed lines.  

 

By symmetry, the magnetic field should be tangential to 

each of them and constant in magnitude for a given loop.  

 

The circular areas bounded by loops 2 and 3 both cut the Toroid: so that each turn of current carrying wire is 

cut once by the loop 2 and twice by the loop 3. 
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Let the magnetic field along loop 1 be B1 in magnitude. 

Then in Ampere’s circuital law, L = 2π r1. 

 

However, the loop encloses no current, so Ie = 0. Thus, 

     B1 (2 π r1) = μ0  (0) = 0 

 

Thus, the magnetic field at any point P in the open space inside the Toroid is zero. 

 

We shall now show that magnetic field at Q is likewise zero. 

 

 Let the magnetic field along loop 3 be B3.  

Once again from Ampere’s law L = 2 π r3.  

 

However, from the sectional cut, we see that the current coming out of the plane of the paper is cancelled 

exactly by the current going into it. 

 Thus, 

     Ie = 0, and B3  = 0.  

 

Let the magnetic field inside the solenoid be B. We shall now consider the magnetic field at S. Once again we 

employ ampere’s law. L= 2 π r2 = 2 π r, where r is the radius of the Toroid  

The current is NI 

B(2 π r ) = µ0NI 

 

𝑩 =
µ𝟎𝐍𝐈

𝟐𝝅𝒓
 

 

If we compare the two results: for a Toroid and solenoid, 

 

Let r be the average radius of the Toroid and n is the number of turns per unit length.  
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Then 

N = 2πr n = (average) perimeter of the Toroid × number of turns per unit length and thus, 

B = μ0 n I,  

i.e., the result for the solenoid! 

In an ideal toroid the coils are circular. In reality the turns of the toroidal coil form a helix and there is 

always a small magnetic field external to the toroid.  

 

11. SOLVED EXAMPLES  

 

EXAMPLE  

A solenoid of length 0.5 m has a radius of 1 cm and is made up of 500 turns. It carries a current of 5 A. 

What is the magnitude of the magnetic field inside the solenoid? 

 

SOLUTION  

The number of turns per unit length is, 

 

   𝑛 =
500

0.5
= 1000 𝑡𝑢𝑟𝑛𝑠 /𝑚  

 

The length l = 0.5 m and radius r = 0.01 m.  

 

Thus,    l/r = 50 i.e., l >>>r  

 

Hence, we can use the long solenoid formula, namely,  

 

   B   = µ0n I  

  = 4π × 10–7 Tm/A × 103/m × 5 A 

   B = 6.28 × 10–3 T  

 

EXAMPLE  
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A solenoid coil of 300 turns /m is carrying a current of 5 A. The length of the solenoid is 0.5 m and 

has a radius of 1 cm. Find the magnitude of the magnetic field inside the solenoid. Draw a graph to 

show the field strength with distance from the center of the solenoid. 

 

SOLUTION    

N= 300 turns /m 

I = 5 A  

Since it is a long solenoid length much greater than 

radius  

B = µ0n I 

   = 4𝜋 × 10−7𝑇𝑚/𝐴 × 300/𝑚 × 5𝐴 

   = 1.9 x 10-3 T 

 

EXAMPLE  

A wire of radius 0.5 cm carries a current of 100A, which is uniformly distributed over the cross section. 

Find the magnetic field  

a) At 0.1 cm from the axis of the wire 

b) At the surface of the wire  

c) At a point 0.2 cm from the surface of the wire  

 

SOLUTION  

a = 0.5 cm = 0.5 x 10-2 m, I = 100 A 

a) B inside =
µ0𝐼

2𝜋𝑎2 𝑟 

 

=
4𝜋 × 10−7 × 100 × 0.1 × 10−2

2 × 𝜋 × (0.5 × 10−2)2
 

 

       = 8.0 x 10-4T 

Distance  

X= 0.25m X= - 0.25m 
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b)  B surface= 
µ0𝐼

2π𝑎2
  =

4𝜋×10−7×100

2𝜋(0.5×10−2)2
  =  8 × 10-1T 

c)  B is to be considered 2 cm from the surface of the wire = 2 cm + 5cm from the centre of the wire  

 B outside =
µ0𝐼

2π𝑅
 

  =
4𝜋×10−7×100

2𝜋×0.7×10−2
  

  = 2.8 x 10 -3 T 

 

12. FORCE ON A MOVING CHARGE IN A MAGNETIC FIELD:  

Just as static charges produce an electric field, the currents or moving charges produce (in addition) a magnetic 

field, denoted by B, again a vector field. It has several basic properties identical to the electric field. 

It is defined at each point in space (and can in addition depend on time). Experimentally, it is found to obey 

the principle of superposition:  

We have so far learnt that a current carrying conductor has a magnetic field around it. The magnitude 

of the field strength given by B can be calculated using Biot Savart’s law and Ampere’s circuital law. 

We will now understand the force on a moving charge in a magnetic field; this magnetic field may be 

due to a magnet or a current carrying conductor. 

This force was given first by H.A. Lorentz based on the extensive experiments of Ampere and others. It is 

called the Lorentz force.  

 

The origin of the mechanical force can be understood as due to interaction between the external 

magnetic field and that produced by the moving charge  
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You have already studied in detail the force due to the electric field. If we look at the interaction of charges 

with the magnetic field,  

We find the following features. 

 It depends on q, v and B (charge of the particle, the velocity and the magnetic field respectively).  

 Force on a negative charge is opposite to that on a positive charge. 

 The magnetic force q [ v × B ] includes a vector product of velocity and magnetic field. 

 The vector product makes the force due to magnetic field vanish (become zero) if velocity and 

magnetic field are parallel or anti-parallel.  

 The force acts in a direction perpendicular to both the velocity and the magnetic field. 

 Its direction is given by the screw rule or right hand rule for vector (or cross) product 

 If a particle carrying a positive charge q and moving with velocity v through a point P in a 

magnetic field experiences a deflecting force F , then the magnetic field at a point P is defined 

by the equation  

                      F = q v ×B 

 The magnetic force is zero if charge is not moving (as then |v|= 0). Only a moving charge 

experiences the magnetic force 

Figure shows direction of F, which causes a mechanical force on the moving charged particle making 

it deflect from its path  

                                        

The magnitude of the force on the charged particle is  

               F= q v sin θ .B    
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Where ‘θ’ is the angle between v and B.  The force is maximum when v and B are at right angles i.e. θ = 900. 

This is given by  

     Fmax = q v B      

If v is parallel to B (θ = 0° or 180°), then sin θ =0 or F = 0 

This means that if the charged particle is moving parallel or anti-parallel to the magnetic field it does not 

experience any force. In fact, this defines the direction of magnetic field. 

If a charged particle moving through a point P in a magnetic field does not experiences a deflecting force, 

then we can say that the particle is moving along or anti-parallel to B.  

Again in the equation, if v = 0, then F = 0. This means that if the charged particle is stationary in the magnetic 

field, then it does not experience any force. (It is important to note that a ‘stationary’ charged particle in an 

electric field does experience a force). 

DIRECTION OF FORCE ON A MOVING CHARGE IN A MAGNETIC FIELD 

Right-hand Palm Rule: Open the right-hand and place it so that tips of the fingers point in the direction of 

the field and thumb in the direction of velocity of the positive charge then the palm forces towards the force 

as shown in figure.   
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THINK ABOUT THESE  

 Why stationary charges are not affected by external magnetic field? 

 Why there is no effect on a charge moving in the direction of the magnetic field? 

 Why is there a maximum force when the angle between the magnetic field and velocity vector is 

900? 

 What changes would occur in the value and direction of F, if the magnetic field B is gradually 

increased or decreased? 

 What changes would occur in the magnetic field B if the velocity of the charged particle 

gradually increased or decreased? 

 What changes would occur in the value and direction of F, if the velocity of the charged particle 

gradually increased or decreased? 

 

13. UNIT OF MAGNETIC FIELD INTENSITY B    

The expression for the magnetic force helps us to define the unit of the magnetic field, if one takes q, F and 

v, all to be unity in the force equation F = q [ v × B] =q v B sin θ, where θ is the angle between v and B  

 

The magnitude of magnetic field B is 1 SI unit, when the force acting on a unit charge (1 C), moving 

perpendicular to B with a speed 1m/s, is one newton. 

 

Dimensionally, we have [B] = [F/qv] and the unit of B is Newton second / (coulomb metre).  

 

This unit is called tesla (T) named after Nikola Tesla (1856 – 1943). Tesla is a rather large unit.  

 

A smaller unit (non-SI) called gauss (=10-4 tesla) is also often used.  

The earth’s magnetic field is about 3.6 × 10-5 T. 
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Another SI unit of magnetic field is weber/meter2 (wb/m2). 

Thus, 1T=1NA -1 m -1 

SOME TYPICAL MAGNETIC FIELDS: 

 

 

 

  

  

 

14. SUMMARY 

In this module ,we have learnt  

 Ampere's circuital law in magnetism is analogous to gauss's law in electrostatics 

 This law is also used to calculate the magnetic field due to any given current distribution. 

 This law states that: 

"The line integral of resultant magnetic field along a closed plane curve is equal to μ0 time the 

total current crossing the area bounded by the closed curve provided the electric field inside the 

loop remains constant"  

 

Thus 

 

  ∮ 𝐁. 𝐝𝐥 = µ𝟎 𝐈𝐞𝐧𝐜  

where μ0 is the permeability of free space, Ienc is the net algebraic current enclosed by the loop  

 The circular sign in equation  means that scalar product B.dl is to be integrated around the closed loop 

known as amperian loop whose beginning and end point are same 

Physical situation  Magnitude of B (in tesla) 

1.   Surface of neutron star  108 

2.   Typical large field in a laboratory  1 

3.   Near a small bar magnet  10-2 

4.   On the earth’s surface  10-5 

5.   Human Nerve fiber  10-10 

6.   Inter-stellar space  10-12 



 

38 
 

Physics-03 (Leph_10403) 

Physics-03 (Leph_10403) Moving Charges and Magnetism Physics 2019 

 We can use any direction of integration for our calculation depending on our convenience 

 To apply the ampere's law we divide the loop into infinitesimal segments dl and for each segment, we 

then calculate the scalar product of B and dl 

 

 B in general varies from point to point so we must use B at each location of dl 

 

 Amperian Loop is usually an imaginary loop or curve ,which is constructed to permit the application 

of ampere's law to a specific situation  

  Amperes law can be used to find 

 

i) Magnetic field due to a current carrying conductor outside the conductor  

 

ii) Magnetic field due to a current carrying conductor inside the conductor  

 

 

iii) Magnetic field due to a current carrying conductor on its surface  

 

iv) Magnetic field due to a current carrying conductor in the shape of a solenoid 

 

 

v) Magnetic field due to a current carrying conductor in the shape of a Toroid  

 

 A mechanical force acts on a moving charge in a magnetic field given by F = q v x B 

 

 Direction of the force is given by right hand palm rule   

 

 Unit of B is Tesla.  

 

 


