1. Module Detail and its structure

Subject Name	Physics
Course Name	Physics (Physics Part 1 Class XII)
Module Name/Title	Unit-02, Module-05: Kirchhoff's Rules Chapter-03: Current Electricity
Module Id	Leph_10305_eContent
Pre-requisites	Resistance, Potential difference, Current, Ohm's law, Cells, combination of resistances and cells in series and parallel.
Objectives	After going through this module, learner will be able to: -Understand Kirchhoff's Rules for currents and voltages in simple electrical circuits Apply Kirchhoff's rules for calculating current s and voltages in simple electrical circuits KeywordsKirchhoff's rules, application of Kirchhoff's rules

2. Development Team

Role	Name	Affiliation
National MOOC Coordinator (NMC)	Prof. Amarendra P. Behera	Central Institute of Educational Technology, NCERT, New Delhi
Programme Coordinator	Dr. Mohd Mamur Ali	Central Institute of Educational Technology, NCERT, New Delhi
Course Coordinator / PI	Anuradha Mathur	Central Institute of Educational Technology, NCERT, New Delhi
Subject Matter Expert (SME)	Dinesh Tyagi	Air Force School Hindan, Ghaziabad, U.P.
Review Team	Associate Prof. N.K. Sehgal (Retd.)	Delhi University
Prof. V. B. Bhatia (Retd.)	Delhi University	
Prof. B. K. Sharma (Retd.)	DESM, NCERT, New Delhi	

Table of contents

1. Unit Syllabus
2. Module wise distribution of unit syllabus
3. Words you should know
4. Introduction
5. Kirchhoff's rules
6. Problem solving using Kirchhoff's rules for electrical circuits
7. Application of Kirchhoff's rules
8. Solved Examples
9. Problems for practice
10. Summary

1. UNIT SYLLABUS: -

Electric current, flow of electric charges in a metallic conductor, drift velocity and mobility, and their relation with electric current; Ohm's law' electrical resistance, V-I characteristics (linear \& non- linear), electrical energy and power, electrical resistivity and conductivity.

Carbon resistors, colour code for carbon resistors; series and parallel combinations of resistors; temperature dependence of resistance

Internal resistance of a cell, potential difference and emf of cell, combination of cells in series and in parallel.

Kirchhoff's laws and simple applications; Wheatstone bridge, Meter bridge.

Potentiometer- principle and its applications to measure potential difference \& for comparing emf of two cells; measurement of internal resistance of a cell.

2
2. MODULE WISE DISTRIBUTION OF UNIT SYLLABUS

8 MODULES

The above unit has been divided into 8 modules for better understanding.

Module 1	- Electric current, - Solids liquids and gases - Need for charge carriers speed of charge carriers in a metallic conductor - flow of electric charges in a metallic conductor - drift velocity, - mobility and their relation with electric current - Ohm's law,
Module 2	- Electrical resistance, - V-I characteristics (linear and non-linear), - Electrical energy and power, - Electrical resistivity and conductivity - Temperature dependence of resistance
Module 3	- . Carbon resistors, - Colour code for carbon resistors; - Metallic Wire resistances - Series and parallel combinations of resistors - Grouping of resistances - Current and potential differences in series and parallel circuits
Module 4	- Internal resistance of a cell, - Potential difference and emf of a cell, - Combination of cells in series and in parallel. - Need for combination of cells

3

Module 5	- Kirchhoff's Rules - Simple applications. of Kirchhoff's Rules for calculating current s and voltages Numerical
Module 6	- Wheat stone bridge - Balanced Wheatstone bridge condition derivation using Kirchhoff's Rules - Wheatstone bridge and Metre Bridge. - Application of meter bridge
Module 7	- Potentiometer - - Principle - Applications to - Measure potential difference - Comparing emf of two cells; - Measurement of internal resistance of a cell. Numerical
Module 8	- Numerical - Electrical energy and power

Module 5

3. WORDS YOU MUST KNOW

- Electrical circuit: It is the arrangement of electrical devices like resistance, cell, etc. to achieve a purpose or objective.

4

- Electromotive Force (EMF): It is the 'force' which makes charge to flow in an electrical circuit. It is defined as work done in moving a unit positive charge once in a closed circuit.
- EMF of a cell (ε): It is the max. Potential difference between electrodes of a cell when no_current being drawn from cell.
- Terminal potential difference of a cell (V): It is the max. Potential difference between electrodes of a cell when current is being drawn.
- Internal resistance of a cell(r): It is the resistance offered by electrolyte to current flowing.
- Potential drop across resistance: It is the potential difference between ends of a resistance. In Ohm's law $\mathrm{V}=\mathrm{IR}$ where, V is potential drop across resistance (for details see role of resistance in module 1)
- Series combination of resistances: When same current flow through all the devices, it is said to be a series combination.
- Parallel combination of resistances: When all devices have same potential difference, it is said to be a parallel combination.

4. INTRODUCTION

Electric circuits generally consist of a number of resistors and cells interconnected sometimes in a complicated way. Have you ever wondered how we can find potential drop across a resistor or current in arm of the circuit in a simplest manner? The formulae we have derived earlier for series and parallel combinations of resistors are not always sufficient to determine all the currents and potential differences in the circuit.

We need to calculate currents and voltages in different segments or branches of electrical circuits. In this module we will learn Kirchhoff's rules for currents and voltages in electrical circuits.

5. KIRCHOFF'S RULES

Two rules, called Kirchhoff's rules, are very useful for analysis of electric circuits

These rules are very fine tools to study and realize that currents in different branches of circuit comprising of series and parallel resistances is not the same, also the voltages developed across different circuit components are different.

Hence

the rules help us to find, potential drop across a device or a component and also the current flowing through an arm of a circuit etc.

First rule: - Junction or Current rule (KCL- Kirchhoff's current law)
It states that the algebraic sum of currents at a junction of an electrical circuit is zero.

$$
\Sigma I=0
$$

or
at a junction in the circuit, the sum of incoming currents = sum of outgoing currents

- It is based on law of conservation of charge.
- This rule is valid for both open and closed circuit.

Second rule: - Kirchhoff's Voltage Rule (KVL- Kirchhoff's voltage law)
It states that in a closed electrical circuit the algebraic sum of EMF's of cells is equal to the algebraic sum of potential drops across resistances.
$\Sigma \mathrm{E}=\Sigma \mathrm{I} \mathrm{R}$

- This law is based on law of conservation of energy.
- This law is valid only for closed circuits.

Sign Conventions: - Since we are saying algebraic sum of emf and potential drops, there must be a sign convention to mark emf and potential drops as positive and negative.

Here is the sign convention for emf and potential drops:

1) For EMF's of cells: if we go from '+' to '-'terminal of cell then, emf is taken as negative (-ve).If we go from '-'to ' + ' terminal of cell then, emf is taken as positive (+ve).
2) For potential drops across resistances: If we go in the direction of current the potential drop is taken as negative (-ve).If we go in the direction opposite to current, the potential drop is taken as positive (+ve).

NOTE Sign convention as the name suggests is a method by choice for the entire circuit. There may be other conventions which would give the same result but should be borne in mind throughout the circuit analysis.

6. PROBLEM SOLVING USING KIRCHCHOFF'S RULES

Let us take an example to understand Kirchhoff's Rules and applications of sign conventions.

7

For applying Kirchhoff's Rule following steps are to be taken:

(i) Draw a large circuit diagram so that there is enough space for labeling.
(ii) Label each junction along with few other points as $\mathrm{A}, \mathrm{B}, \mathrm{C} \ldots$..etc for the identification of various closed parts i.e. loops of the circuit.
(iii)Label all quantities i.e. resistances, currents and emfs. Assume the direction of each unknown current based on the fact that a current from a source starts from its positive terminal and flows through the external circuit to reach its negative terminal.
(iv) If the actual direction of the current is opposite to what we have assumed, the calculated value of the current will have a negative sign. Thus, correct use of Kirchhoff's laws not only gives us the magnitude but also the directions of unknown currents.
(v) Use junction rule to express the currents that reach or leave the junctions. This helps in minimizing the number of unknown currents in the circuit and hence reduces the calculation work.
(vi)Choose any closed loop of the circuit and travel around it to finally return back to the point of start. While doing so, write the potential differences across resistors i.e. $\mathrm{I} \times \mathrm{R}$ and emf with proper sign i.e. (+)ve or (-)ve. Use Kirchhoff's laws and equate their sum to zero to get an independent equation.
(vii) Choose more loops to get as many independent equations as the unknown currents.
(viii) Solve these equations simultaneously to find the unknown quantities.

Let us now apply Kirchhoff's rules and sign conventions.
As per Kirchhoff's First rule, at junction C\&F

$$
\mathbf{I}_{1}=\mathbf{I}_{\mathbf{2}}+\mathbf{I}_{\mathbf{3}}
$$

In loop ABCDEFA

$$
-I_{1} R_{1}-E_{1}-I_{1} R_{2}-E_{3}-I_{3} R_{4}+E_{4}=0
$$

In loop ABCFA

$$
-\mathbf{I}_{1} \mathbf{R}_{1}-E_{1}-I_{1} \mathbf{R}_{2}-E_{2}-I_{2} R_{3}=0
$$

In loop FCDEF

$$
\mathbf{I}_{2} \mathbf{R}_{3}+\mathbf{E}_{2}-\mathbf{E}_{3}-\mathbf{I}_{3} \mathbf{R}_{4}+\mathbf{E}_{4}=\mathbf{0}
$$

7. APPLICATIONS OF KIRCHHOFF'S RULES

a) Relation between emf (e), TPD (v) and internal resistance of cell(r)

By applying Kirchhoff's Voltage rule

$$
\begin{aligned}
& -\mathrm{IR}-\mathrm{Ir}+\mathrm{E}=0 \\
& -\mathrm{V}-\mathrm{Ir}+\mathrm{E}=0 \quad \ldots \ldots \ldots \ldots \text { for discharging of cell } \\
& \mathrm{E}>\mathrm{V} \quad \mathrm{~V}=\mathrm{E}-\mathrm{Ir} \\
&
\end{aligned}
$$

The above equation if for discharging of cell. Note that in discharging of cell emf > TPD
Equation for charging of cell is given by
$V=E+I r$

V > E for charging of cell

For charging of cell TPD > emf
Expression for internal resistance(r) of cell
From V $=\mathrm{E}-\mathrm{Ir}$

$$
\mathrm{Ir}=\mathrm{E}-\mathrm{V}
$$

$$
\mathbf{r}=\left(\frac{\mathrm{E}-\mathrm{V}}{\mathrm{I}}\right) \mathbf{R}
$$

b) Combinations of cells
i) Cells in series

Fig: a showing E_{1} and E_{2} having Internal resistances r_{1} and r_{2}

Fig:b showing $E_{\text {eq }} \boldsymbol{\&} \mathbf{r}_{\text {eq }}$

By Kirchhoff's Voltage rule

$$
\begin{aligned}
& -\mathrm{IR}-\mathrm{I} \mathrm{r}_{2}+\mathrm{E}_{2}-\mathrm{I} \mathrm{r}_{1}+\mathrm{E}_{1}=0 \\
& -\mathrm{V}+\left(\mathrm{E}_{1}+\mathrm{E}_{2}\right)-\mathrm{I}\left(\mathrm{r}_{1}+\mathrm{r}_{2}\right)=0 \\
& \mathrm{~V}=\left(\mathrm{E}_{1}+\mathrm{E}_{2}\right)-\mathrm{I}\left(\mathrm{r}_{1}+\mathrm{r}_{2}\right)
\end{aligned}
$$

Comparing it with $\mathrm{V}=\mathrm{E}_{\mathrm{eq}}-\mathrm{Ir}_{\mathrm{eq}}$

$$
\mathrm{E}_{\mathrm{eq}}=\mathrm{E}_{1}+\mathrm{E}_{2}
$$

$$
\mathrm{r}_{\mathrm{eq}}=\mathrm{r}_{1}+\mathrm{r}_{2}
$$

Why should we compare it with $\mathrm{V}=\mathrm{E}_{\mathrm{eq}}-\mathrm{Ir}_{\mathrm{eq}}$?

It is because the two cells E_{1} and E_{2} combine to form an equivalent cell ($E_{\text {eq }}$), discharging equation of which is given by
$\mathrm{V}=\mathrm{E}_{\mathrm{eq}}-\mathrm{I} \mathrm{r}_{\mathrm{eq}}$

If there are ' n ' identical cells in series

$$
\begin{aligned}
& \mathrm{E}_{\mathrm{eq}}=\mathrm{n} \mathrm{E} \\
& \mathrm{r}_{\mathrm{eq}}=\mathrm{nr} \\
& \mathrm{~V}=\mathrm{nE}-\mathrm{Inr} \Rightarrow \mathrm{IR}=\mathrm{nE}-\mathrm{nIr} \\
& \mathrm{I}=\frac{\mathrm{nE}}{\mathrm{R}+\mathrm{nr}} \\
& \mathrm{I} \text { will be max if } \mathrm{R} \gg \mathrm{nr} \\
& \mathrm{I}_{\max }=\frac{\mathrm{nE}}{\mathrm{R}}
\end{aligned}
$$

Max current can be drawn from a series combination, if external resistance is much greater than total internal resistance of cells.
ii) Cells in parallel

By Kirchhoff's junction rule,

At junctions C and F

$$
\mathrm{I}=\mathrm{I}_{1}+\mathrm{I}_{2}
$$

For loop ABCDEFA

$$
-E_{1}+I_{1} r_{1}+I R=0
$$

- $\quad E_{1}+I_{1} r_{1}+V=0$

$$
I_{1}=\frac{E_{1}-v}{r_{1}}
$$

In loop FEDCF

$$
\begin{array}{r}
-\mathrm{IR}-\mathrm{I}_{2} \mathrm{r}_{2}+\mathrm{E}_{2}=0 \\
-\mathrm{V}-\mathrm{I}_{2} \mathrm{r}_{2}+\mathrm{E}_{2}=0 \\
\mathrm{I}_{2}=\frac{\mathrm{E}_{2}-\mathrm{V}}{\mathrm{r}_{2}}
\end{array}
$$

Putting I_{1} and I_{2} in (1)

$$
\begin{gathered}
\mathrm{I}=\frac{\mathrm{E}_{1}-V}{\mathrm{r}_{1}}+\frac{\mathrm{E}_{2}-V}{\mathrm{r}_{2}} \\
\mathrm{I}=\frac{\mathrm{E}_{1} \mathrm{r}_{2}-V r_{2}+\mathrm{E}_{2} \mathrm{r}_{1}-V r_{1}}{\mathrm{r}_{1} \mathrm{r}_{2}} \\
\mathrm{Ir}_{1} \mathrm{r}_{2}=\left(E_{1} r_{2}+E_{2} r_{1}\right)-\mathrm{V}\left(\mathrm{r}_{1}+\mathrm{r}_{2}\right)
\end{gathered}
$$

Dividing equation by $\left(r_{1}+r_{2}\right)$ to bring it in standard form of discharging equation

$$
\begin{gathered}
\mathrm{V}=\mathrm{E}-\mathrm{Ir} \\
\mathrm{I}\left(\frac{\mathrm{r}_{1} \mathrm{r}_{2}}{\mathrm{r}_{1}+\mathrm{r}_{2}}\right)=\frac{\mathrm{E}_{1} \mathrm{r}_{2}+\mathrm{E}_{2} \mathrm{r}_{1}}{\mathrm{r}_{1}+\mathrm{r}_{2}}-\mathrm{V}
\end{gathered}
$$

Comparing it with $\mathrm{V}=\mathrm{E}_{\mathrm{eq}}-\mathrm{Ir}_{\mathrm{eq}}$

$$
\begin{aligned}
& \mathrm{E}_{\mathrm{eq}}=\frac{\mathrm{E}_{1} \mathrm{r}_{2}+\mathrm{E}_{2} \mathrm{r}_{1}}{\mathrm{r}_{1}+\mathrm{r}_{2}} \\
& \mathrm{r}_{\mathrm{eq}}=\frac{\mathrm{r}_{1} \mathrm{r}_{2}}{\mathrm{r}_{1}+\mathrm{r}_{2}} \\
\Rightarrow \quad & \frac{1}{\mathrm{r}_{\mathrm{eq}}}=\frac{1}{\mathrm{r}_{1}}+\frac{1}{\mathrm{r}_{2}}
\end{aligned}
$$

If there are n identical cells in parallel

$$
\begin{gathered}
\mathrm{E}_{\mathrm{eq}}=\mathrm{E} \quad\left(\mathrm{E}_{1}=\mathrm{E}_{2}=\mathrm{E}, \mathrm{r}_{1}=\mathrm{r}_{2}=\mathrm{r}\right) \\
\frac{1}{\mathrm{r}_{\mathrm{eq}}}=\frac{1}{\mathrm{r}}+\frac{1}{\mathrm{r}}+\cdots \mathrm{n} \text { times }
\end{gathered}
$$

$$
\begin{aligned}
& \mathrm{r}_{\mathrm{eq}}=\frac{\mathrm{r}}{\mathrm{n}} \\
& \mathrm{~V}=\mathrm{E}_{\mathrm{eq}}-\mathrm{Ir}_{\mathrm{eq}} \\
& \mathrm{Ir}=\mathrm{E}-\frac{\mathrm{Ir}}{\mathrm{n}} \\
& I=\frac{\mathrm{E}}{\mathrm{R}+\frac{\mathrm{r}}{\mathrm{n}}}
\end{aligned}
$$

I will be max if $r / n \gg R$

$$
\mathbf{I}_{\max }=\frac{\mathbf{E}}{\frac{\mathbf{r}}{\mathbf{n}}}=\frac{\mathbf{n E}}{\mathbf{r}}
$$

Note :

- Maximum current can be drawn from parallel combination if total internal resistance is much greater than total external resistance.
- Max current can be drawn from a series combination, if external resistance is much greater than total internal resistance of cells.
- Maximum current can be drawn from parallel combination if total internal resistance is much greater than total external resistance.
- Maximum power transfer theorem :-

Maximum power can be transferred from combinations of cell to the external resistance if external resistance is equal to total internal resistance of the cell i.e., $\mathrm{R}=\mathrm{r}_{\mathrm{eq}}$

8. SOLVED EXAMPLES

EXAMPLE

Find the value of current I in the circuit in the figure.

SOLUTION:

$$
\mathrm{I}=3+4-1.3-2=3.7 \mathrm{~A}
$$

EXAMPLE

A battery of $6 \mathrm{~V} \&$ internal resistance 0.5Ω is connected in parallel with another of $10 \mathrm{~V} \&$ internal resistance 1Ω. The combination sends a current through an external resistance of 12 Ω. Find the current through each battery.

SOLUTION

The arrangement of two batteries and external resistance is shown in the figure. Let $\mathrm{I}_{1} \& \mathrm{I}_{2}$ be the currents given by the two batteries so that the current through the external resistance is $\left(\mathrm{I}_{1}+\mathrm{I}_{2}\right)$ as shown in the figure.

Applying Kirchhoff's $2^{\text {nd }}$ rule to the closed circuit $\mathrm{ARBE}_{1} \mathrm{~A}$,

$$
\left(\mathrm{I}_{1}+\mathrm{I}_{2}\right) \times 12+\mathrm{I}_{1} \times 0.5-6=0
$$

Or

$$
\begin{equation*}
12.5 \mathrm{I}_{1}+12 \mathrm{I}_{2}=6 \tag{i}
\end{equation*}
$$

Applying Kirchhoff's $2^{\text {nd }}$ rule to the closed circuit $\mathrm{ARBE}_{2} \mathrm{~A}$, we get

$$
\left(\mathrm{I}_{1}+\mathrm{I}_{2}\right) \times 12+\mathrm{I}_{2} \times 1-10=0
$$

Or

$$
\begin{equation*}
12 \mathrm{I}_{1}+13 \mathrm{I}_{2}=10 \tag{ii}
\end{equation*}
$$

Multiplying (i) by $13 \&$ (ii) 12, we get

$$
\begin{align*}
& 162.5 \mathrm{I}_{1}+156 \mathrm{I}_{2}=78 \tag{iii}\\
& 144 \mathrm{I}_{1}+156 \mathrm{I}_{2}=120 \tag{iv}
\end{align*}
$$

Subtracting (iv) from (iii), we get

$$
18.5 I_{1}=-42 \text { or } I_{1}=-42 / 18.5=-2.27 A
$$

Negative sign shows that I_{1} actually flows in a direction opposite to the chosen direction as shown in the figure

Substituting the value of I_{1} in (ii),

Or

$$
\begin{gathered}
13 \mathrm{I}_{2}=10+12 \times 42 / 18.5=185+504 / 18.5 \\
\mathrm{I}_{2}=689 / 18.5 \times 13=2.86 \mathrm{~A}
\end{gathered}
$$

EXAMPLE

Determine current in each branch of network shown in figure.

SOLUTION:

Each branch of the network is assigned an unknown current to be determined by the application of Kirchhoff's rules. To reduce the number of unknowns at the outset, the first rule of Kirchhoff is used at every junction to assign the unknown current in each branch. We then have the three unknowns I_{1}, I_{2} and I_{3} which can be found by applying the second rule of Kirchhoff to three different closed loops. Kirchhoff's second rule for the closed loop ADCA gives:

$$
10-4\left(I_{1}-I_{3}\right)-2\left(I_{1}+I_{2}-I_{3}\right)-1 \times I_{1}=0
$$

Or

$$
\begin{equation*}
7 \mathrm{I}_{1}+2 \mathrm{I}_{2}-6 \mathrm{I}_{3}=10 \ldots \tag{i}
\end{equation*}
$$

In the closed circuit ADCA,

$$
-4 I_{2}-2\left(I_{3}-I_{2}-1 \times I_{1}+10=0\right)
$$

Or

$$
\begin{equation*}
\mathrm{I}_{1}-2 \mathrm{I}_{2}+6 \mathrm{I}_{3}=10 \quad \ldots . \tag{ii}
\end{equation*}
$$

In the closed current ABEDA

$$
-\left(\mathrm{I}_{1}-\mathrm{I}_{3}\right) 4-5-\mathrm{I}_{3} \times 4=0
$$

Or

$$
\begin{equation*}
4 \mathrm{I}_{1}-8 \mathrm{I}_{3}=-5 \tag{iii}
\end{equation*}
$$

On solving (i),(ii),(iii), we get

$$
\begin{aligned}
& I_{1}=2.5 \mathrm{~A} \\
& I_{2}=1.875 \mathrm{~A}=I_{3}
\end{aligned}
$$

EXAMPLE

Using Kirchhoff's rules, determine
(i) the voltage drop across the unknown resistor R
(ii) the current flowing in the arm EF in the circuit as shown:

SOLUTION:

(i) Applying Kirchhoff's rule we get

$$
\begin{aligned}
& V_{B}-V_{A}=-1+4=3, \quad \text { where } V_{A} \text { and } V_{B} \text { are potential at } A \text { and } B \\
& V_{B}-V_{A}=3
\end{aligned}
$$

Now, A is directly connected to B and is connected to C

Therefore, $\quad \mathrm{V}_{\mathrm{A}}=\mathrm{V}_{\mathrm{D}}$ and $\quad \mathrm{V}_{\mathrm{B}}=\mathrm{V}_{\mathrm{C}}$

$$
\mathrm{V}_{\mathrm{D}}-\mathrm{V}_{\mathrm{C}}=3=\mathrm{V}_{\mathrm{F}}-\mathrm{V}_{\mathrm{E}}
$$

Therefore, Potential difference across \mathbf{R} is $\mathbf{3 V}$
(ii) Also, $\mathrm{V}_{\mathrm{F}}-\mathrm{V}_{\mathrm{E}}=-3 \mathrm{I}+6$

$$
\begin{aligned}
& 3=-3 \mathrm{I}+6 \\
& 3 \mathrm{I}=3 \\
& \mathrm{I}=1 \mathrm{~A}
\end{aligned}
$$

Therefore, current through EF is $\mathbf{1 A}$

EXAMPLE

Using Kirchhoff's rules determine the value of unknown resistor R in the circuit so that no current flows through 4Ω resistance. Also find the potential difference between $A \boldsymbol{\&} D$.

SOLUTION:

On applying Kirchhoff's voltage rule for loop FABEF

$$
\begin{gathered}
+2 \mathrm{I}-9+6+4 \times 0=0 \\
2 \mathrm{I}=3
\end{gathered}
$$

$$
\mathrm{I}=1.5 \mathrm{~A}
$$

For loop BCDEB

$$
\begin{aligned}
& 3+\mathrm{IR}+4 \times 0-6=0 \\
& \quad \mathrm{IR}=3
\end{aligned}
$$

Substituting values of current $\mathrm{I}=1.5 \mathrm{~A}$ in the above equation, we get

$$
\begin{aligned}
& \mathrm{R}=\frac{3}{1.5} \\
& \mathrm{R}=\mathbf{2} \mathbf{\Omega}
\end{aligned}
$$

9. PROBLEMS FOR PRACTICE

Question-1 Using Kirchhoff's rules; write the expression for the currents I_{1}, I_{2} and I_{3} in the circuit diagram shown below.

Question 2-State and explain Kirchhoff's rule.
Question3- Are Kirchhoff's rules applicable to both a.c. and d.c.?
Question 4-Using Kirchhoff's rules determine the value of current I_{1} in the electric circuit given in figure.

Question5- In the circuit shown in figure, $R_{1}=4 \Omega, R 2=R_{3}=15 \Omega, R_{4}=30 \Omega$ and $E=10 \mathrm{~V}$. Calculate the equivalent resistance of the circuit and current in each resistor.

Question 6: State the fundamental concepts on which two Kirchhoff's rules are based.
Question7: In the given circuit, assuming point A to be at zero potential, use Kirchhoff's rules to determine potential at point B.

Question8 : In the network shown here, find the following:

(a) Currents I_{1}, I_{2} and I_{3}
(b) TPD of each battery

Consider 6Ω to be internal resistance of 6 V battery and 4Ω to be internal resistance of 8 V battery.

Question9: In the network given below, use Kirchhoff's rules to calculate the values of electric currents I_{1}, I_{2} and I_{3}.

Question 10: Apply these rules to the loops PRSP and PRQP to write the expressions for the currents I_{1}, I_{2} and $I 3$ in the given circuit.

Question11: In the given network, find the values of the currents I_{1}, I_{2} and I_{3}.

Answers:

1. $\mathrm{I}_{1}=\frac{2}{13} \mathrm{~A}, \mathrm{I}_{2}=\frac{7}{13} \mathrm{~A}, \mathrm{I}_{3}=\frac{9}{13} \mathrm{~A}$
2. First rule: - Junction or Current rule (KCL- Kirchhoff's current law)

It states that the algebraic sum of currents at a junction of an electrical circuit is zero.

$$
\Sigma \mathrm{l}=0
$$

or
at a junction in the circuit, the sum of incoming currents = sum of outgoing currents

- It is based on law of conservation of charge.
- This rule is valid for both open and closed circuit.

Second rule: - Kirchhoff's Voltage Rule (KVL- Kirchhoff's voltage law)

It states that in a closed electrical circuit the algebraic sum of EMF's of cells is equal to the algebraic sum of potential drops across resistances.
$\Sigma \mathrm{E}=\Sigma \mathrm{I} \mathrm{R}$

- This law is based on law of conservation of energy.

This law is valid only for closed circuits
3. Yes
4. $\mathrm{I}_{1}=-1.2 \mathrm{~A}$
5. $10 \Omega, \mathrm{I}_{1}=1 \mathrm{~A}, \mathrm{I}_{2}=\mathrm{I}_{3}=\frac{6}{15} \mathrm{~A}, \quad \mathrm{I} 4=\frac{6}{30} \mathrm{~A}$
6. Kirchhoff's first rule is based on the fact that the charges are not accumulated at a junction.

Kirchhoff's second rule supports the law of conservation of energy.
7. $\mathrm{V}_{\mathrm{B}}=1$ volt
8. i) $\mathrm{I}_{1}=0, \quad \mathrm{I}_{2}=\frac{1}{2} \mathrm{~A}, \quad \mathrm{I}_{3}=\frac{1}{2} \mathrm{~A}$

$$
\text { ii) } \mathrm{V}_{\mathrm{AB}}=6 \mathrm{~V}, \quad \mathrm{~V}_{\mathrm{FC}}=6 \mathrm{~V}
$$

$9 . . \mathrm{I}_{1}=\frac{18}{31} \mathrm{~A}, \quad \mathrm{I}_{2}=\frac{66}{31} \mathrm{~A}, \quad \mathrm{I}_{3}=\frac{48}{31} \mathrm{~A}$
10. $\mathrm{I}_{1}=\frac{39}{860} \mathrm{~A}, \quad \mathrm{I}_{2}=\frac{4}{215} \mathrm{~A}, \quad \mathrm{I}_{3}=\frac{11}{172} \mathrm{~A}$
11. $\mathrm{I}_{1}=\frac{13}{33} \mathrm{~A}, \quad \mathrm{I}_{2}=-\frac{2}{33} \mathrm{~A}, \quad \mathrm{I}_{3}=\frac{15}{33} \mathrm{~A}$

10. SUMMARY

You have learnt in this module

- Potential drop is the difference in potentials across ends of a conductor.
- Electromotive force (EMF) is the force which drives charge in a closed electrical circuit cell, generator are sources of EMF.

EMF is defined as work done in moving a unit + ve charge once in a closed circuit.

EMF (E) of cell is defined as maximum potential difference b / w electrodes of a cell when no current is being drawn from the cell.

- Terminal Potential difference (TPD) (V) of cell is defined as maximum potential difference b / w electrodes when current is being drawn from the cell.
- Internal Resistance (r) of a cell is the obstruction offered by electrodes \& electrolyte of a cell to current flowing through it.
- Kirchhoff's rules are the tools to analyze an electrical circuit. They enable us to find potential drop or current in a branch or a section of the circuit device.
- Kirchhoff's first rule is current rule or junction rule which states that at an electrical junction sum of incoming currents $=$ sum of outgoing currents.

First rule is based on law of conservation of charge.

- Kirchhoff's second rule is voltage rule which states that in a closed electrical circuit algebraic sum of emf of cells $=$ algebraic sum of potentials drops across resistors.
$\Sigma \mathrm{E}=\Sigma$ IR Second rule is based on law of conservation of energy.
- Application of Kirchhoff's rules to calculate currents and voltages in simple circuits

