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1. Introduction

We know that derivatives have wide range of applications in various disciplines in real life situations.

It has been discussed in previous modules how derivatives can be used to determine rate of change of

various quantities and how for a given function we can use derivatives to find the intervals in which

the function is increasing or decreasing.

This module explains the use of differentiation to find the equations of the tangent and normal to a

curve. 

Let us recall what do we mean by a tangent and a normal line to a curve. The tangent is a straight line

which just touches the curve at a given point rather we say that it cuts the curve at two coincident

points and the normal to a curve is a straight line which is perpendicular to the tangent and passes

through the point of tangency. 

See the figure below,

Fig-1



We know to write the equation of a line in two-dimensional plane. In the following figure the line is

making angle θ with positive direction of x-axis in anticlockwise direction.

 

Fig-2

The trigonometrical tangent of the angle  θ , i.e., tanθ  is known as slope or gradient of the line and

we generally denoted it by m.

Recall that the equation of a straight line passing through a given point (xo, yo) having finite slope m,

is given by

                                  y – yo = m (x – xo)

2. Slopes of Tangents and Normals

     Let, y = f(x) be the equation of a continuous curve and P (xo, yo) be a point on it, 

then  ( dy
dx )

(xo , yo )
 is the slope of the tangent to the curve y = f(x) at point P (xo, yo). Thus, slope of the

tangent at P,   

                                               m = ( dy
dx )

P



 Fig-3

 

    i.e.                       m = tan θ=( dy
dx )

(xo , yo )

=  f'(x0)

where, θ is the angle made by the tangent with positive direction of x-axis in anticlockwise direction.

The normal to the curve y = f(x) at point P (xo, yo) is a line which passes through the point P and is

perpendicular to the tangent at P 

Hence,  Slope of the normal at P = 
−1

Slope of thetangent at P

                                          =  

−1

( dy
dx )

P

  =  −( dx
dy )

( x0 , y0 )

                                          = 
−1

f ' ( x0 )
            

  when,                               f'(xo) ≠ 0

Example 1:  Find the slope of tangent and normal to the curve y = 3x4 – 4x at x = 4.

Solution:

We have                          y = 3x4 – 4x 

Differentiating both the sides w.r.t. x, we get



                    
dy
dx

  = 3.4x3 – 4 = 12 x3 – 4  

The slope of the tangent at x = 4,

                  m = ( dy
dx )

x=4
= 12 (4)3 – 4  

                                           = 768 – 4 = 764

Thus, the slope of tangent to the curve at x = 4 is,   

                                       m =  764.

Now, slope of normal to the curve (at x = 4) 

                                           = 
−1
m

 = 

−1

( dy
dx )

x=4

                                           = 
−1
764

Example 2: Show that the tangents to the curve y = 2x3 – 3 at the points (2, 13) and (–2, –19) are

parallel.

Solution:

 The equation of the given curve is,

                                    y = 2x3 – 3

Differentiating both the sides w.r.t. x, we get

                    
dy
dx

  = 2.3x2 = 6 x2         ………………(i)

The slope of the tangent at point (2, 13),  

                  m1 = ( dy
dx )

(2,13)

  =  ( dy
dx )

x=2
 

                                                 = 6 (2)2  = 24  ………………(ii)

The slope of the tangent at point (–2, –19),  

                  m1 = ( dy
dx )

(−2,−19)

  =  ( dy
dx )

x=−2
 

                                                      = 6 (–2)2  =  24  ………………(iii)

Form (ii) and (iii),

                                   m1  =  m2



         Thus, the tangents to the curve y = 2x3 – 3 at the points (2, 13) and (–2, –19) are parallel.

Example 3: Find points at which the tangents to the curve y = x3 – 3x2 – 9x + 7 are parallel to the x-

axis.

Solution:

 The equation of the given curve is,

                                    y = x3 – 3x2 – 9x + 7 

Differentiating both the sides w.r.t. x, we get

                    
dy
dx

  = 3x2 – 6x – 9 = 3 (x2 – 2x – 3)

                            = (x – 3) (x + 1)       

Let the required point be P (x1, y1) at which the tangent to the curve is parallel to x-axis.

The slope of the tangent at point (x1, y1) is,

                  ( dy
dx )

(x1 , y1)
 = (x1 – 3) (x1 + 1)   

Since, the tangent at point (x1, y1) is parallel to x-axis,

Therefore, 

              ( dy
dx )

(x1 , y1)
= 0   ⇒   (x1 – 3) (x1 + 1) = 0

                                           ⇒   x1 = 3, – 1

Since, point (x1, y1) lies on the given curve,

 ∴ for x1 = 3,  

           y1 = (3)3 – 3(3)2 – 9(3) + 7 = 27 – 27 – 27 + 7 = – 20  

for x1 = – 1,  

           y1 = (– 1)3 – 3(– 1)2 – 9(– 1) + 7 = – 1 – 3 + 9 + 7 = 12

Thus, the required points are (3, – 20) and (– 1, 12).

Example 4: Find the slope of normal to the curve,

                              x = a cos3θ,  y = a sin3θ  at  θ  = 
π
4



Solution:

  We are given,       x = a cos3 θ   and    y = a sin3 θ  

Differentiating, x = a cos3 θ,  w.r.t. ‘ θ ’ we get

                     
dx
dθ

 = a (3 cos2 θ). 
d (cosθ)

dθ

                          = 3a cos2 θ.(–sin θ)

                          = – 3a sin θ cos2 θ     …………….(i)

Now differentiating, y = a sin3 θ, w.r.t. ‘ θ ’ we get

                     
dy
dθ

 = a (3 sin2 θ). 
d (sinθ)

dθ

                          = 3a sin2 θ.cos θ         …………….(ii)

From (i) and (ii) we get,

                   
dy
dx

 = 
dy /dθ
dx /dθ

                  = 
3a sin2 θ .co sθ
– 3a sin θ cos2 θ

                  =   - tan θ

 Now,       Slope of normal = 

−1

( dy
dx )  

                                    = 
−1

(−tanθ)

  ∴  at  θ   = 
π
4

,   

              Slope of normal = 
−1

(−tan
π
4

)
 = 1  

3. Equations of Tangents and Normals 

We know that the equation of a straight line passing through a given point (xo, yo) and having finite

slope m is given by

                                 y – yo = m (x – xo)

Slope of the tangent to the curve y = f(x) at point P (xo, yo) is, 



                               m = ( dy
dx )

(xo , yo )

= f'(xo)

 Hence, the equation of the tangent to the curve y = f(x) at point P (xo, yo) is given by,

                                 y – yo =  f'(xo) (x – xo)

And since the normal is perpendicular to the tangent, so the slope of the normal to the curve y = f (x)

at point P (xo, yo) is,

                                  
−1

f ' (xo)
 , if   f'(xo) ≠ 0

And the equation of the normal to the curve y = f(x) at (xo, yo) is 

                                 y – yo = 
−1

f ' (xo)
 (x – xo)

 or                        (y – yo). f'(xo) + (x – xo) = 0         

                  

4. Some Particular cases:

Case 1:  If tangent is parallel to the x-axis, we have

                                    θ = 0  ⇒  tan θ = 0

fig-4



Slope of the tangent line to the curve y = f(x) at point P (xo, yo) is zero. Observe in the fig-4, in such a

case when tangent line is parallel to x-axis, the normal line will be parallel to y-axis. 

Therefore,  at point P (xo,  yo),  the equation of tangent line will be y = yo and the equation of normal

line will be x = xo.

Case 2:   When tangent line to the curve is parallel to y-axis, 

i.e., when  θ → 
π
2

, we get  
dy
dx

  = tan θ → ∞,

thus, the slope of the tangent line in such case will not be defined. 

See the figure below,

  

     Fig-5

  In such case, the equation of the tangent line will be x = xo and the equation of the normal line will

be y = yo, at point P (xo, yo).

Example 5: Find equation of the tangent to the curve y = x3 – x at a point whose x-coordinate is 2.

Solution:

The equation of the given curve is,

                                     y = x3 – x       ……………..(i)

Differentiating both the sides w.r.t. x, we get



                        
dy
dx

  = 3x2 – 1 

 ∴        ( dy
dx )

x=2
= 3(2)2 – 1 = 11

Thus, slope of the tangent to the curve at x = 2,   

                                       m = 11   ……………..(ii)

Putting, x = 2 in equation (i),

                                  y = (2)3 – 2 = 6

Hence, we have to find tangent at point (2, 6). 

Using             y – yo =  f'(xo) (x – xo)

Equation of the required tangent is,

                      y – 6 = 11. (x – 2)

or                   11x – y – 16 = 0

Example 6:  Find the point on the curve  y = (x  – 2)2 at which the tangent is parallel to the chord

joining the points (2, 0) and (4, 4) also find equation of the tangent.

Solution:

The given equation is   y = (x – 2)2                 ………………. (i)

Differentiating,

  Slope of tangent =
dy
dx

 = 2(x – 2)                     ………………. (ii)

Slope of the chord joining the points (2, 0) and (4, 4)

                              = 
4−0
4−2

 = 2          [slope=
y2− y1

x2−x1
]   ……. (iii)   

Since tangent is parallel to the chord joining the given points

     ∴                                 2(x – 2) =2        …………… from (ii) and (iii)

                       ⇒ x = 3

putting x = 3 in equation (i), we get 

                                      y = (3 – 2)2 = 1

Thus, the required point is (3, 1).

  The tangent parallel to the chord joining the points (2, 0) and (4, 4) passes through the point (3, 1)

and its slope is 2, 



Therefore, the required equation is,

                                   y – 1 = 2 (x – 3)

      or                         2 x – y – 5 = 0

Example 7: Find the equation of tangent and normal to the curve given by 

            x = 1 –  cos θ  and   y = θ  –  sin θ  at  θ =  
π
4

 .

Solution:

Let, (x1, y1) be the coordinates of the point at  θ =  
π
4

 , then

                  x1 = 1 – cos
π
4

 = 1 – 
1

√2
  = 

√2−1
√2

  ………………. (i)

        and    y1 = 
π
4

 – sin
π
4

  =  
π
4

 – 
1

√2
      ………………. (ii)

Given curve is given by     x = 1 – cos θ  and   y = θ  –  sin θ

Differentiating both the sides w.r.t. θ , we get

                     
dx
dθ

 = 
d (1−cosθ )

dθ
 =  sin θ

                      
dy
d θ

 = 
d (θ−sinθ)

dθ
 = 1 –  cos θ

Now            
dy
dx

 = 
dy /dθ
dx /dθ

 = 
1 – cosθ

sinθ

             ( dy
dx )θ=π

4

 =  
1 – cos

π
4

sin
π
4

 = 

1 –
1

√2
1
√2

                               = √2 - 1      ………………. (iii)

The equation of the tangent is given by,

                  y – y1 = 
dy
dx

 (x – x1)

from (i), (ii), and (iii) we get,

                  y – ( π
4

–
1

√2 )  = (√2−1 )  [x – (√2−1
√2 )]

and equation of the normal is given by,



                  y – y1 = 

−1
(dy)
(dx)

 (x – x1)

Thus from (i), (ii), and (iii), equation of the normal is,

                  y – ( π
4

–
1

√2 )  = 
−1

(√2−1 )
 . [x – ( √2−1

√2 )]

Example 8: Find the equation of tangent to the curve given by y = 
x−7

(x−2)(x−3)
at the point where

it cuts the x-axis.

Solution:

The equation of the given curve is,

                        y = 
x−7

(x−2)(x−3)
          ………………. (i)

or              (x – 2) (x – 3) y  –  (x – 7) = 0

on x-axis y = 0, putting it in equation (i) we get x = 7.

Thus, the curve cuts the x-axis at (7, 0).

Differentiating eq. (i) w.r.t. x, we get,

          (x – 2) (x – 3) 
dy
dx

 + y (2x – 5) – 1 = 0    ………………. (ii)

Putting x = 7 and y = 0 in eq. (ii) we get,

                            ( dy
dx )

(7 , 0)
=  

1
20

So, the tangent passes through the point (7, 0) and the slope of the tangent is 
1
20

.

Thus, the required equation of the tangent is,

                  y – 0 = 
1
20

 (x – 7)

or                 x – 20y – 7 = 0



Notes:

1. If two curves  y  =  f(x) and  y  =  g(x) intersect at point P(xo, yo), then the angle between the

tangents to the two curves at point P(xo, yo) is defined as the angle of intersection of the two

curves.

If  m1  and m2   are the slopes of the two tangents at the point of intersection P(xo, yo) then the

angle θ  between them is given by 

                         tanθ=±
m2−m1

1+m1 m2
 

2. Two curves intersect at right angle if the tangents to the curves at the point of intersection are

perpendicular to each other.

3. When  θ = 
π
2

, the curves are said to be orthogonal at the point of intersection 

4. when  θ  = 0, the two curves touch each other at the point of intersection and then they have a

common tangent at that point.

Example 9: Show that the curves, x2 + y2 – 2x = 0 and x2 + y2 – 2y = 0 cut orthogonally at the point (0,

0).

Solution:

The given curves are,  

                               x2 + y2 – 2x = 0     ……………… (i)

and                         x2 + y2 – 2y = 0     ……………… (ii)

It is obvious from the equations that the point (0, 0) lies on both the curves, hence the two curves cut

each other at (0, 0).

Differentiating equation (i) w.r.t. x, we get,

                         2x + 2y 
dy
dx

 – 2 = 0    

     ⇒                         2y 
dy
dx

 = 2 – 2x 

     ⇒                              
dy
dx

 = 
1−x

y
 

 ∴ Slope of the tangent to the curve (i) at point (0, 0) is,



                          ( dy
dx )

(0,0)

= 
1−0

0
,    which is not defined. 

Hence, the tangent to the curve (i) at (0, 0) is parallel to y-axis.

                                                                                ……………… (iii)

Now differentiating equation (ii) w.r.t. x, we get,

               2x + 2y 
dy
dx

 – 2
dy
dx

 = 0    

     ⇒                       2(y – 1) 
dy
dx

 = – 2x 

     ⇒                                     
dy
dx

 = 
−x
y−1

 

  ∴ Slope of the tangent to the curve (ii) at point (0, 0) is,

                          ( dy
dx )

(0,0)

= 0

Hence, tangent to the curve (ii) at (0, 0) is parallel to x-axis.                                ……………… (iv)

From (iii) and (iv) the tangents to the two curves at point (0, 0) are perpendicular to each other, hence

the two curves cut orthogonally.

5. Approximations

In this  section we are going to learn a useful technique to calculate small  changes (or errors) in

dependent  variable  corresponding  to  small  changes  (or  errors)  in  independent  variable  using

differentials. 

This technique is of great importance in the theory of errors in Engineering, Physics, Statistics and in

many other branches of Science. So, we are going to learn use differentials to find approximate values

of certain quantities.

  Let, y = f(x) be a function of x,

                             f : A → B ,   A  ⸦ B

Let ∆ x be a small increment in the value of independent variable x and the corresponding increment

in the value of dependent variable y be ∆ y. Then, 

             ∆ y = f (x + ∆ x) – f (x)



Fig-6

Here we define,

(i) The differential of x, denoted by dx, as

                        dx = ∆ x

(ii) The differential of y, denoted by dy, as

                        dy = f ’(x) dx   

                f ’(x) is slope of the tangent to the curve at point P(x, y)

      then we have               dy = f ’(x) ∆ x     ( ∵ dx = ∆ x)

                  ⇒ dy = ( dy
dx ) . ∆ x     ………………. (i)

Look at the figure to understand the geometrical meaning of ∆ x,  ∆ y, dx and dy. It is clear that the

differential  of the dependent variable  dy is  not equal to the increment of dependent variable  ∆ y

(caused due to the change in independent variable) i.e., dy ≠ ∆ y. But the differential of independent

variable x is equal to the increment of the independent variable (dx = ∆ x).

Now from the figure,

        Slope of the line through segment PQ = 
∆ y
∆ x



     When ∆ x → 0, line PQ becomes tangent to the curve at point P 

      and then ∆ y → dy.

So, when increment ∆ x ( = dx) is very small compared with x, dy is a good approximation of ∆ y i.e.

dy ≈ ∆ y.

In many problems it  is  easier  to  compute  dy,  hence for small  change  ∆ x in  x we can compute

approximate change ∆ y in the dependent variable y.

Note:

While learning differentiation we have defined  
dy
dx

  as derivative of y w. r. t. x as limit of the ratio

∆ y
∆ x

 when  ∆ x → 0 and considered 
dy
dx

 

as a symbol not as a quotient. Here we have defined symbols dx and 

 dy as differentials of x and y in such a way that original meaning of the symbol 
dy
dx

 coincides with

the quotient dy divided by dx.

Absolute error:  The error ∆ x in x is called the absolute error in x.

Relative error:  If ∆ x is an error in x, then 
∆ x
x

 is called the relative error in x.

Percentage error:  If ∆ x is an error in x, then ( ∆ x
x

x100)  is called the percentage error in x.

Example 10: Use differentials and find approximate value of √25.3  

Solution:

 Let            y = f(x) = √x       ……………………. (i)

           x = 25  and  x + ∆ x = 25.3  then  ∆ x  = 0.3

and          ∆ y = √ x+∆ x   –  √x

                        = √25.3    –  √25

                        = √25.3    –  5

 ∴         √25.3    =  5 + ∆ y ………………… (ii)

Now           ∆ y  ≈  dy         ………………… (iii)



and             dy = ( dy
dx ) . ∆ x

                       = ( 1
2√ x )∆ x             ( ∵ y = √x  )

                       = ( 1
2√25 ) .(0.3)          (putting values of x ∆ x)

                      = ( 1
10 ) . (0.3 )     

                      = 0.03           .………………. (iv)

From (ii), (iii) and (iv),     √25.3  ≈ 5 + 0.03

                                                     ≈ 5.03

Thus, the approximate value of √25.3  is 5.03

Example 11: Find the approximate value of f (2.01), where f (x) = 4x2 + 5x + 2.

Solution:

      Given   f (x) = 4x2 + 5x + 2

Let                x = 2 and ∆ x = 0.01

Then                f (2. 01) = f (x + ∆ x) 

Suppose                     y = f(x)                ……………. (i)

then              ∆ y  =  f (x + ∆ x) – f (x)

or                  ∆ y  =  f (2.01) – f (2)

or                  f (2.01) = f (2) + ∆ y        ……………………. (ii)

Now           ∆ y  ≈ dy         ………………… (iii)

and             dy = ( dy
dx ) . ∆ x

                       = f '
(x ). ∆ x . ∆ x

                       = (8x + 5). ∆ x

                       = (8 * 2 + 5). (0.01) = 0.21     ………………… (iv)

                       (putting values of x and ∆ x)

                f (2) = 4(2)2 + 5(2) + 2 = 28         ………………… (v)

substituting the values in (ii)



                 f (2.01) ≈ 28 + 0.21 

                              ≈ 28.21

Hence, the approximate value of f (2.01) is 28.21.

Example 12: If radius of a circular metal plate is measured as 10 cm with an error of 0.02 cm, then

find the approximate error in calculating its area.

Solution:

 Let r be the radius of the circular metal plate then its area A is given by

                       A =  π r2     ………………… (i)

Radius of the plate is measured as 10 cm with an error of 0.02 cm

  ∴ r = 10 cm     and        ∆ r = 0.02 cm  ………………… (ii)

The error in calculating area (∆ A) is approximately equal to dA

Hence, approximate error in calculating area,

                           dA = ( d A
dr ) .∆ r

                                = (2  π r) . ∆ r

                                = [2 π ( 10 )] . (0.02)    (putting values of r and ∆ r)

                                = 0. 4 π  cm2

Summary:

1. A tangent to a curve is a straight line which cuts the curve just at one point.

2. If y = f(x) be the equation of a continuous curve then ( dy
dx )

(xo , yo )
is the slope of the tangent

to the curve at a

 point P (xo, yo) on the curve.

3. The equation of the tangent to the curve y = f(x) at point P (xo, yo) is,

                                y – yo = f'(xo) (x – xo)

4. Since normal is perpendicular to the tangent at the point of contact,  so the slope of the

normal to the curve y = f (x) at point P (xo, yo) is,

                                  
−1

f ' (xo)
 , if  f'(xo)  ≠ 0



5. If tangent line is parallel to the x-axis, then slope of the tangent at point P (xo, yo) is zero, i.e.

                          ( dy
dx )

(xo , yo )

= 0

and the equation of the tangent line to the curve at point P (xo, yo) will be y = yo .  

    

6. If  ( dy
dx )

(xo , yo )
 does not exist, then the tangent to the curve at point P (xo, yo)  is parallel to

the y-axis and its equation is x = xo.

7. Two  curves  will  intersect  at  right  angle  if  the  tangents  to  the  curves  at  the  point  of

intersection  are  perpendicular  to  each  other  and  then  they  are  said  to  cut  each  other

orthogonally.

8. The equation of the normal to the curve y = f(x) at (xo, yo) is given by,                      

y – yo = 

−1

( dy
dx )

(xo , yo )

 (x – xo)

9. Let y = f(x) and ∆ x be a small increment in x,  ∆ y be the increment in y corresponding to the

increment in x,

  i.e.,                   ∆ y = f (x + ∆ x) – f (x)

then dy given by,

                             dy = ( dy
dx ) .∆ x

                 dy  is a good approximation for ∆ y when dx = ∆ x is relatively small compared to x and we

denote it by ∆ y ≈ dy .




