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. Summary

1. Adjoint of a Square Matrix

Let A=[Ajj] be a square matrix of order n and let Cjj be cofactor of ajj in A. Then the transpose of
the matrix of cofactors of elements of A is called the Adjoint of A and is denoted by Adj A.
Thus, Adj A = [Cij]" — (adj A)jj = Cji = Cofactor of aji in A.

a;; Q12 433
IfA=|az1 az; a23] then,
az; dazz 0azs
Ci1 Ciz C13T Ci1 Gy Cyy
Adj A=|Cy  Cyp Czs] :[C12 Cy2 C32]1
(31 G5 Cs3 Ci3 Cy3 (33

where Cjj denotes the cofactor of ajj in A.

P q

Example: Find the Adjoint of matrix A:[aij]:[r S

Solution: We have, Cofactor of ai11=s, Cofactor of a;» = -r, Cofactor of a»; = -q and, Cofactor of

az=p

ranslly ST )

Note: It is evident from this example that the Adjoint of a square matrix of order 2 can be easily

obtained by interchanging the diagonal elements and changing signs of off-diagonal elements.

If A:[:é i] then by the above rule, we obtain

AgAl )



1 1 1
Example: Find the Adjoint of matrix A = [aj] = [ 2 1 —3]

-1 2 3
Solution: Let Cjj be cofactor of aj; in A. Then, the cofactors of elements of A are given by
1 =31 12 =31_ _ 12 1]
C11—|2 3|—9.(312— | |— 3.Cs=|"] 5|=5
_ |11 _ _ 1 1)_
Cou= |2 3 1,Cxn= | 4,Cos I 3,

—4Csp = |—5C3 |2 1|=—1

! e agae
1 -3 2 =3
Adjoint of A is transpose of the matrix of cofactor matrix associated with A.

—1 —4
—3 —1
Theorem : Let A be a square matrix of order n. Then, A(adj A) = |A| In = (adj A)A.

a;; A1z di3
a1 Qzz Az3| be asquare matrix of order 3, then,
az; dszz Aass

adj A =

Verification : If A=

C[Cu Gz G [Ca G Cn
adj A=|Cy1 Cyy Cy3| =[Ciz Cy (3,
C31 G35 C33 Ci3 Cy3 (33

where Cijj denotes the cofactor of ajj in A.

a1 Q12 a131[Ci11 Ca1 C3y

A (adj A) = |az1 Az a23”612 Ca2 C32]

az1 A3z Aaz3llCiz Cy3 (i3
Al 0 0
=lo 14 o
0 0 |A

Since, |A| = a;,C1; +a,,C3+a,5C5 and this is true for the sum of products of the elements of a

row (or column ) with their corresponding cofactors

1 0 O
=|Al|0 1 0
0 0 1

Similarly(adj A) A = |A| 13=A( adj A)



Example. Compute the adjoint of the matrix A given by A =

2 6]and verify that

A(adj A) = |A|l=(adj A).
Solution. We have,

1 4 5
3 2 6]=1(0-6)-4(0-0)+5(3-0)29
0 1 0

Let Cij be cofactor of ajj in A. Then, the cofactors of elements of A are given by

A=

Cu= i 8 —6,C1o= |0 6| =0, C13:3 il =3,
Cor= | (5)=5,C22 |O O|—0<: Ik
Ca1 = 42} 2 = 14,C3 =— |3 6| =9, Ca= |§ LZL| =-10

- Adjoint of A'is transpose of the matrix of cofactor matrix associated with A.
—1 —4
—3 —1

2. SINGULAR AND NON-SINGULAR MATRIX

Definition : A square matrix A is said to be singular if |A| =

adj A =

Example: The determinant |41L g| is1x8-2x4 =0,

Hence A is singular matrix.

Definition : A square matrix A is said to be non-singular if |A| # 0.
_ o2 11 2|4
Let A= [3 4] . Then |A| = |3 L7 46=240

Hence A is a non-singular matrix.

1 -2 3
Example: For what value of x the matrix A=[1 2 1 ] is singular?
x 2 =3

Solution: The matrix A is singular, if|x| =



1 -2 3
1 2 11=0
x 2 -3

On expanding along first row, we get
i, Sl Sl =
Again simplifying, we get

(-6-2) + 2 (-3-x)+3(2-2x)=0
-8-6-2x+6-6x=0

-8x-8=0

X =-1

Example : If A is non-singular matrix of order 3, then | adj A| = |A]?
Solution : Since A is non-singular matrix of order three , then |A| # 0
We know that A(adj A) = |Allz = (adj A)A.

Al 0 0
>A@djA)=[0 14 o
0 0 A
Al 0 0
=>|AG@djA)=|0 4] ©
0 0 |4
= A [|(adj A)l= |AP
= |(adj A)= |AP

In fact , the above result is true for any non-singular matrix A of order n.

In general, if A is a non-singular matrix of order n, then |adj(A)|=|A|",

Example : If A is an non-singular matrix of order 3 and |A|=5, then find |adjA| .
Solution : Here A is an non-singular matrix of order 3.
Therefore ,| adj A| = |A]?

[adj Al = AP by |(adj A)= |AI™*

(1A =5)

= |adj A| = 5%= 25



Theorem : If A and B are nonsingular matrices of the same order, then AB and BA are also non-
singular matrices of the same order.
Theorem : The determinant of the product of matrices is equal to product of their respective

determinants, that is |[AB|=|A||B|, where A and B are square matrices of the same order.

3. INVERSE OF MATRIX

Inverse: A non-singular square matrix of order n is invertible if there exists a square matrix B of
the same order such that AB=I,=BA.

In such a case, we say that the inverse of A is B and we write, A =B.

Theorem : A square matrix A is invertible if and only if A is non-singular matrix. The
adjA
Al

inverse of matrix A is then given by A= =

Proof : Let A be asquare matrix of order n.

First, let A be invertible , then there exists a square matrix B of order n such that
AB = I,=BA

=| AB| =| Iy

IAlIB[=1

=|A|# 0

=A is non-singular .

Conversely , let A be non-singular, i.e. |JA|] # 0

AadjA) =] Al I = (adj A)A

A (ﬁ adjA) = (|Tlx| adjA) A (As|A| % 0)

=AB = I,= BA where B = Ellade

Therefore , A is invertible.



adjA

And inverse of A is given by A™! = i

Example: Compute the inverse of the matrix A given by A =

Solution: Firstly we evaluate the determinant of the matrix
|A|= 1(16-9)-3(4-3)+3(3-4) = 1#£ 0, so inverse exists.
~1 _ adjA
|A]
Let Cij be cofactor of aj; in A. Then, the cofactors of elements of A are given by
|1

Cllzg 431_|=7,C12=—1 3] = —-1,Ci3= |1 §|=—1

A=

|§ i|=—3,C22:|1 |—1C23 h 3|=0,
C31:|?1_ §|=—3,032:—|1 3|—0c:3 |1 i|=1
7 -1 -1
So, the cofactor matrix is Cij=[—3 1 0 ]
-3 0 1
7 -1 -11" 17 -3 -3
Ade=CijT[ 1 0] :[—1 1 0]
-1 0 1

3
3

7
Therefore, At = % [

The Inverse of a Matrix when it satisfies some Matrix Equation f(A)=0.

Example: Show that A= [4 :g]satisfies the equation A% -6A + 171 =0. Hence, find AL,
Solution : Here, A= [4 _3]

Therefore ,A%= AA = [ _3] [2 - ] 6 +_12 :8 _T_ 12] [18 _18]
sa=e6)[3 105 o)

andani=17 [y LG 7]



Therefore

A2_6A+17|2:[—5—12+17 ~18+18 + 0 [8 8]:0

18—18+0 7-24+171"
Thus, the matrix A satisfies the equation x?-6x +17 =0

Now A? -6A + 17 1,=0

Which implies A% -6A =- 17 I,

ALAZ-6A) = A-17 1) ( Pre-multiplying both sides by A™)
AlAZ 6 ATA=-17T AL,

A-6l=-17 A

A== (A6l2)

A== (61, -A)
=t o5 TP

114 3
“17 [—3 2]
To Solve Matrix Equations :

Find the matrix X for which [; :4]X = [_716 _26]

Solution : Let P= [; :4]and Q= [_716 _26]_Then the given matrix equation is PX=Q.

Therefore, |P| = =-2+12=10 % 0.

5 2l
So, P is an invertible matrix. Let Cj; be cofactors of ajj in P=[ ajj].
Therefore , C11=-2,C12—3

Cx4 and C22 =1

—2 —3]T

Therefore , adj P = [ 4 1

=[5 1
Therefore P = I%Iadj P= [:; 411]

Now PX=Q
Which implies P (PX)=P1Q
(P1P)X=P1Q



| X=P1Q

= X=P1Q

»xsls 1050 %

_1[32+28 12+8]
10148+7 18+ 2

6 2
=1,
2

2 -1 1
Example: IfA=|-1 2 —1] find (adj A)*
1 -1 2
2 -1 1
Solution: We have ,A=[—-1 2 —1]
1 -1 2

Therefore, |A| =2(4-1) + 1(-2 +1) + 1(1-2)=4 #0

On re-arranging the formula of A we obtain (adj A)1= A/|A|
2 -1 1

-1 2 —1]

1 -1 2

Therefore (adj A)™* = i




Summary:

11 Q12 Gg3 Cii G G
e IfA=|a21 az; azz|then, AdjA=|C;, Cp, Cs3,|, where Cjj denotes the cofactor
az; 4a4zz 4asz Ciz3 Cy3 (33
of ajj.

e A(adj A) = |A]ln = (adj A)A where A is a square matrix of order n

e A square matrix A is said to be singular if |A| = 0.

e A square matrix A is said to be non- singular if |A| # 0.

e If Alis a non-singular matrix of order n, then |adj(A)|=|A|"2.

e |If AB=I,=BA where B is a square matrix , then B is called the inverse of A and we write,
Al=B

° (A—l)—l =A

e A square matrix has an inverse if and only if it is non-singular.

-1 — ade
Al



