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1. Adjoint of a Square Matrix  

Let A=[Aij] be a square matrix of order n and let Cij be cofactor of aij in A. Then the transpose of 

the matrix of cofactors of elements of A is called the Adjoint of A and is denoted by Adj A. 

Thus, Adj A = [Cij]
T → (adj A)ij = Cji = Cofactor of aji in A. 

If A = [

𝑎11 𝑎12 𝑎13

𝑎21 𝑎22 𝑎23

𝑎31 𝑎32 𝑎33

] then, 

Adj A=[

𝐶11 𝐶12 𝐶13

𝐶21 𝐶22 𝐶23

𝐶31 𝐶32 𝐶33

]

𝑇

 = [

𝐶11 𝐶21 𝐶31

𝐶12 𝐶22 𝐶32

𝐶13 𝐶23 𝐶33

],  

where Cij denotes the cofactor of aij in A. 

 

Example: Find the Adjoint of matrix A=[aij]=[
𝑝 𝑞
𝑟 𝑠

] 

Solution: We have, Cofactor of a11=s, Cofactor of a12 = -r, Cofactor of a21 = -q and, Cofactor of 

a22=p 

⸫ Adj A =[
𝑠 −𝑟

−𝑞 𝑝 ]
𝑇

= [
𝑠 −𝑞

−𝑟 𝑝 ] 

 

Note: It is evident from this example that the Adjoint of a square matrix of order 2 can be easily 

obtained by interchanging the diagonal elements and changing signs of off-diagonal elements. 

If A=[
−2 3
−5 4

], then by the above rule, we obtain 

Adj A =[
4 −3
5 −2

] 

 



 

Example: Find the Adjoint of matrix A = [aij] = [
1 1 1
2 1 −3

−1 2 3
] 

Solution: Let Cij be cofactor of aij in A. Then, the cofactors of elements of A are given by  

C11 = |
1 −3
2 3

| = 9,C12 =− |
2 −3

−1 3
| = −3,C13 = |

2 1
−1 2

| = 5 

C21 = - |
1 1
2 3

| = −1,C22 =|
1 1

−1 3
| = 4,C23 = -|

1 1
−1 2

| = −3, 

C31 = |
1 1
1 −3

| = −4,C32 =− |
1 1
2 −3

| = 5,C33 = |
1 1
2 1

| = −1 

Adjoint of A is transpose of the matrix of cofactor matrix associated with A. 

adj A = [
9 −3 5

−1 4 −3
−4 5 −1

]

𝑇

= [
9 −1 −4

−3 4 5
5 −3 −1

] 

 

Theorem : Let A be a square matrix of order n. Then, A(adj A) = |A| In = (adj A)A. 

Verification  : If A = [

𝑎11 𝑎12 𝑎13

𝑎21 𝑎22 𝑎23

𝑎31 𝑎32 𝑎33

] be a square matrix of order 3, then, 

adj A=[

𝐶11 𝐶12 𝐶13

𝐶21 𝐶22 𝐶23

𝐶31 𝐶32 𝐶33

]

𝑇

 = [

𝐶11 𝐶21 𝐶31

𝐶12 𝐶22 𝐶32

𝐶13 𝐶23 𝐶33

],  

where Cij denotes the cofactor of aij in A. 

A (adj A) =  [

𝑎11 𝑎12 𝑎13

𝑎21 𝑎22 𝑎23

𝑎31 𝑎32 𝑎33

] [

𝐶11 𝐶21 𝐶31

𝐶12 𝐶22 𝐶32

𝐶13 𝐶23 𝐶33

] 

= [

|𝐴| 0 0
0 |𝐴| 0
0 0 |𝐴|

] 

Since , |𝐴| = 𝑎11𝐶11 +𝑎12𝐶12+𝑎13𝐶13 and this is true for the sum of products of the elements of a 

row (or column ) with their corresponding cofactors 

= |A| [
1 0 0
0 1 0
0 0 1

] 

=|A| I3 

Similarly( adj A) A = |A| I3=A( adj A) 



 

Example. Compute the adjoint of the matrix A given by A = [
1 4 5
3 2 6
0 1 0

]and verify that 

A(adj A) = |A|I=(adj A). 

Solution. We have, 

|A|=[
1 4 5
3 2 6
0 1 0

]=1(0-6)-4(0-0)+5(3-0)=9 

Let Cij be cofactor of aij in A. Then, the cofactors of elements of A are given by 

C11 = |
2 6
1 0

| = −6,C12=-|
3 6
0 0

| = 0, C13=|
3 2
0 1

| = 3, 

C21=- |
4 5
1 0

| = 5 ,C22 =|
1 5
0 0

| = 0, C23 = -|
1 4
0 1

| = −1 

C31 = |
4 5
2 6

| = 14,C32 =− |
1 5
3 6

| = 9, C33 = |
1 4
3 2

| = −10 

⸫ Adjoint of A is transpose of the matrix of cofactor matrix associated with A. 

adj A = [
9 −3 5

−1 4 −3
−4 5 −1

]

𝑇

= [
9 −1 −4

−3 4 5
5 −3 −1

] 

 

2. SINGULAR AND NON-SINGULAR MATRIX 

Definition : A square matrix A is said to be singular if |A| = 0 

Example:  The determinant |
1 2
4 8

| is 1 x 8 - 2 x 4  = 0, 

Hence A is singular matrix. 

Definition : A square matrix A is said to be non-singular if |A| ≠ 0. 

Let A = [
1 2
3 4

] . Then |A| = |
1 2
3 4

|= 4-6 =-2 ≠ 0 

Hence A is a non-singular matrix. 

 

Example: For what value of x the matrix A =[
1 −2 3
1 2 1
𝑥 2 −3

] is singular? 

Solution: The matrix A is singular, if|𝑥| = 0 



 

|
1 −2 3
1 2 1
𝑥 2 −3

|=0 

On expanding along first row, we get 

1|
2 1
2 −3

| -(-2) |
1 1
𝑥 −3

| + 3 |
1 2
𝑥 2

| =0 

Again simplifying, we get 

(-6-2) + 2 ( -3-x)+3(2-2x)=0 

-8-6-2x+6-6x=0  

-8x-8=0 

x =-1 

 

Example : If A is non-singular matrix of order 3 , then | adj A| = |A|2 

Solution : Since A is non-singular matrix of order three , then |A|  ≠ 0 

We know that A(adj A) = |A|I3 = (adj A)A. 

⇒ A(adj A) = [

|𝐴| 0 0
0 |𝐴| 0
0 0 |𝐴|

] 

⇒ |A(adj A)| = |

|𝐴| 0 0
0 |𝐴| 0
0 0 |𝐴|

| 

⇒ |A ||(adj A)|= |A|3 

⇒ |(adj A)|= |A|2 

In fact , the above result is true for any non-singular matrix A of order n. 

In general, if A is a non-singular matrix of order n, then |adj(A)|=|A|n-1. 

 

Example : If A is an non-singular matrix of order 3 and |A|=5 , then find |adjA| . 

Solution : Here A is an non-singular matrix of order 3. 

Therefore ,| adj A| = |A|2 

|adj A| = |A|2                         by |(adj A)|= |A|n-1 

( |A| =5) 

⇒ |adj A| = 52= 25 



 

Theorem : If A and B are nonsingular matrices of the same order, then AB and BA are also non-

singular matrices of the same order. 

Theorem : The determinant of the product of matrices is equal to product of their respective 

determinants, that is |AB|=|A||B|, where A and B are square matrices of the same order. 

 

3. INVERSE OF MATRIX 

Inverse: A non-singular square matrix of order n is invertible if there exists a square matrix B of 

the same order such that AB=In=BA. 

In such a case, we say that the inverse of A is B and we write, A-1 =B. 

Theorem : A square matrix A is invertible if and only if A is non-singular matrix. The 

inverse  of matrix A is then given by 𝐴−1 = 
𝑎𝑑𝑗𝐴

|𝐴|
 

Proof : Let A be  a square matrix of order n. 

First , let A be invertible , then there exists a square matrix B of order n such that  

AB = In= BA 

⇒| AB| =| In| 

|A | |B| = 1  

⇒|A| ≠ 0 

⇒A is non-singular . 

Conversely , let A  be non-singular, i.e. |A|  ≠ 0 

A (adj A ) = | A| In = ( adj A)A  

 𝐴 (
1

|A|
𝑎𝑑𝑗𝐴) = (

1

|A|
𝑎𝑑𝑗𝐴) 𝐴                                                                       ( As |A|  ≠ 0) 

⇒AB = In= BA where B = 
1

|A|
𝑎𝑑𝑗𝐴 

Therefore , A is invertible.  



 

And inverse of A is given by 𝐴−1 = 
𝑎𝑑𝑗𝐴

|𝐴|
 

Example: Compute the inverse of the matrix A given by A =[
1 3 3
1 4 3
1 3 4

]. 

Solution: Firstly we evaluate the determinant of the matrix 

|A|= 1(16-9)-3(4-3)+3(3-4) = 1≠ 0, so inverse exists. 

 𝐴−1 =
𝑎𝑑𝑗𝐴

|A|
 

Let Cij be cofactor of aij in A. Then, the cofactors of elements of A are given by  

C11 = |
4 3
3 4

| = 7, C12 =− |
1 3
1 4

| = −1,C13 = |
1 4
1 3

| = −1 

C21 = - |
3 3
3 4

| = −3,C22 =|
1 3
1 4

| = 1,C23 = -|
1 3
1 3

| = 0, 

C31 = |
3 3
4 3

| = −3,C32 =− |
1 3
1 3

| = 0,C33 = |
1 3
1 4

| = 1 

 

So, the cofactor matrix is Cij =[
7 −1 −1

−3 1 0
−3 0 1

] 

Adj A = 𝐶𝑖𝑗
𝑇= [

7 −1 −1
−3 1 0
−3 0 1

]

𝑇

 = [
7 −3 −3

−1 1 0
−1 0 1

] 

Therefore, A-1 = 
1

1
[

7 −3 −3
−1 1 0
−1 0 1

] = [
7 −3 −3

−1 1 0
−1 0 1

] 

 

The Inverse of a Matrix when it satisfies some Matrix Equation  f(A)=0. 

Example: Show that A= [
4 −3
5 −2

]satisfies the equation A2 -6A + 17I =0. Hence, find A-1. 

Solution : Here, A= [
4 −3
5 −2

] 

Therefore ,A2= AA = [
2 −3
3 4

] [
2 −3
3 4

] = [
4 − 9 −6 − 12

6 + 12 −9 + 16
] =[

−5 −18
18 7

] 

-6A = (-6 ) [
2 −3
3 4

] =[
−12 18
−18 −24

] 

And 17I = 17 [
1 0
0 1

]=[
17 0
0 17

] 



 

Therefore  

A2 -6A + 17 I2 = [
−5 − 12 + 17 −18 + 18 + 0
18 − 18 + 0 7 − 24 + 17

]  =[
0 0
0 0

]=0 

Thus, the matrix A satisfies the equation x2-6x +17 =0 

Now A2 -6A + 17 I2=0 

Which implies A2 -6A =- 17 I2 

A-1(A2 -6A) = A-1(- 17 I2)                                      ( Pre-multiplying both sides by A-1) 

A-1A2 -6 A-1A = - 17 A-1 I2 

A-6I2= - 17 A-1 

A-1 =-
1

17
 ( A-6I2) 

A-1 =
1

17
 (6I2 -A) 

=
1

17
{ [

6 0
0 6

] _[
2 −3
3 4

]} 

=
1

17
[

4 3
−3 2

] 

To Solve Matrix Equations : 

Find the matrix X for which [
1 −4
3 −2

]X = [
−16 −6

7 2
] 

Solution : Let P= [
1 −4
3 −2

]and Q= [
−16 −6

7 2
]. Then the given matrix equation is PX=Q. 

Therefore, |P| = |
1 −4
3 −2

|= - 2+ 12 =10 ≠ 0. 

So, P is an invertible matrix. Let Cij be cofactors of aij in P=[ aij]. 

Therefore , C11= -2,C12−3 

C214 and C22 =1 

Therefore , adj P = [
−2 −3
4 1

]
𝑇

 

= [
−2 4
−3 1

] 

Therefore P-1 = 
1

|𝑃|
adj P = 

1

10
[
−2 4
−3 1

] 

Now PX= Q 

Which implies P-1 (PX)= P-1 Q 

(P-1 P)X= P-1 Q 



 

I X= P-1 Q 

⇒ X= P-1 Q 

⇒ X= 
1

10
[
−2 4
−3 1

] [
−16 −6

7 2
] 

=
1

10
[
32 + 28 12 + 8
48 + 7 18 + 2

] 

=[
6 2
11

2
2] 

 

Example : If A = [
2 −1 1

−1 2 −1
1 −1 2

] , find (adj A)-1 

Solution : We have , A = [
2 −1 1

−1 2 −1
1 −1 2

] 

Therefore, |A| = 2(4-1) + 1( -2 +1) + 1( 1-2) = 4 ≠ 0 

On re-arranging the formula of A-1 we obtain (adj A)-1= A/|A| 

Therefore (adj A)-1 = 
1

4
[

2 −1 1
−1 2 −1
1 −1 2

] 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Summary: 

• If A = [

𝑎11 𝑎12 𝑎13

𝑎21 𝑎22 𝑎23

𝑎31 𝑎32 𝑎33

] then,  Adj A = [

𝐶11 𝐶21 𝐶31

𝐶12 𝐶22 𝐶32

𝐶13 𝐶23 𝐶33

], where Cij denotes the cofactor 

of aij. 

• A(adj A) = |A|In = (adj A)A where A is a square matrix of order n 

• A square matrix A is said to be singular if |A| = 0. 

• A square matrix A is said to be non- singular if |A| ≠ 0. 

• If A is a non-singular matrix of order n, then |adj(A)|=|A|n-1. 

• If AB=In=BA  where B is a square matrix , then B is called the inverse of A and we write, 

A-1 =B 

• (𝐴−1)−1 = A 

• A square matrix has an inverse if and only if it is non-singular. 

• A−1 = 
adjA

|A|
 

 


