1. Details of Module and its structure

Module Detail	
Subject Name	Mathematics
Course Name	Mathematics 03 (Class XII, Semester - 1)
Module Name/Title	Determinant - Part 4
Module Id	lemh_10404
Pre-requisites	Basic knowledge about Adjoint of a Square Matrix
Objectives	After going through this lesson, the learners will be able to understand the following: - Adjoint of a Square Matrix - Reversal law - Inverse of a matrix
Keywords	Adjoint of a Square Matrix, Reversal Law, Matrix Inverse

2. Development Team

Role	Name	Affiliation
National Coordinators (NMC)		CIET, NCERT, New Delhi
Program Coordinator	Dr. Indu Kumar	Prof. Amarendra P. Behera
Course Coordinator	Prof. Til Prasad Sharma	DESM, NCERT, New Delhi
Subject Coordinator	Anjali Khurana	CIET, NCERT, New Delhi
Subject Matter Expert (SME)	Dr. Monika Sharma	Shiv Nadar University, Noida
Revised By	Manpreet Kaur Bhatiya	ITNM College, GGSIP
Review Team	Prof. Bhim Prakash Sarrah	University
	Prof. V.P. Singh (Retd.)	Assam University, Tezpur
Prof. SKS Gautam (Retd.)	DESM, NCERT, New Delhi	

TABLE OF CONTENTS

1. Adjoint of a Square Matrix

2. Singular and Non-Singular Matrix

3. Inverse of Matrix

4. Summary

1. Adjoint of a Square Matrix

Let $A=\left[A_{i j}\right]$ be a square matrix of order n and let $C_{i j}$ be cofactor of a_{ij} in A . Then the transpose of the matrix of cofactors of elements of A is called the Adjoint of A and is denoted by Adj A.

Thus, $\operatorname{Adj} \mathrm{A}=\left[\mathrm{C}_{\mathrm{ij}}\right]^{\mathrm{T}} \rightarrow(\operatorname{adj} \mathrm{A})_{\mathrm{ij}}=\mathrm{C}_{\mathrm{ji}}=$ Cofactor of a_{ji} in A .
If $\mathrm{A}=\left[\begin{array}{lll}a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33}\end{array}\right]$ then,
$\operatorname{Adj} \mathrm{A}=\left[\begin{array}{lll}C_{11} & C_{12} & C_{13} \\ C_{21} & C_{22} & C_{23} \\ C_{31} & C_{32} & C_{33}\end{array}\right]^{T}=\left[\begin{array}{lll}C_{11} & C_{21} & C_{31} \\ C_{12} & C_{22} & C_{32} \\ C_{13} & C_{23} & C_{33}\end{array}\right]$,
where C_{ij} denotes the cofactor of a_{ij} in A .

Example: Find the Adjoint of matrix $\mathrm{A}=\left[\mathrm{a}_{\mathrm{ij}}\right]=\left[\begin{array}{ll}p & q \\ r & s\end{array}\right]$
Solution: We have, Cofactor of $a_{11}=s$, Cofactor of $a_{12}=-r$, Cofactor of $a_{21}=-q$ and, Cofactor of $\mathrm{a}_{22}=\mathrm{p}$
$\therefore \quad$ Adj $\mathrm{A}=\left[\begin{array}{cc}s & -r \\ -q & p\end{array}\right]^{T}=\left[\begin{array}{cc}s & -q \\ -r & p\end{array}\right]$

Note: It is evident from this example that the Adjoint of a square matrix of order 2 can be easily obtained by interchanging the diagonal elements and changing signs of off-diagonal elements.

If $A=\left[\begin{array}{ll}-2 & 3 \\ -5 & 4\end{array}\right]$, then by the above rule, we obtain
$\operatorname{Adj} \mathrm{A}=\left[\begin{array}{ll}4 & -3 \\ 5 & -2\end{array}\right]$

Example: Find the Adjoint of matrix $\mathrm{A}=\left[\mathrm{a}_{\mathrm{ij}}\right]=\left[\begin{array}{ccc}1 & 1 & 1 \\ 2 & 1 & -3 \\ -1 & 2 & 3\end{array}\right]$
Solution: Let C_{ij} be cofactor of a_{ij} in A . Then, the cofactors of elements of A are given by
$C_{11}=\left|\begin{array}{cc}1 & -3 \\ 2 & 3\end{array}\right|=9, C_{12}=-\left|\begin{array}{cc}2 & -3 \\ -1 & 3\end{array}\right|=-3, C_{13}=\left|\begin{array}{cc}2 & 1 \\ -1 & 2\end{array}\right|=5$
$C_{21}=-\left|\begin{array}{ll}1 & 1 \\ 2 & 3\end{array}\right|=-1, C_{22}=\left|\begin{array}{cc}1 & 1 \\ -1 & 3\end{array}\right|=4, C_{23}=-\left|\begin{array}{cc}1 & 1 \\ -1 & 2\end{array}\right|=-3$,
$\mathrm{C}_{31}=\left|\begin{array}{cc}1 & 1 \\ 1 & -3\end{array}\right|=-4, \mathrm{C}_{32}=-\left|\begin{array}{cc}1 & 1 \\ 2 & -3\end{array}\right|=5, \mathrm{C}_{33}=\left|\begin{array}{ll}1 & 1 \\ 2 & 1\end{array}\right|=-1$
Adjoint of A is transpose of the matrix of cofactor matrix associated with A.
$\operatorname{adj} \mathrm{A}=\left[\begin{array}{ccc}9 & -3 & 5 \\ -1 & 4 & -3 \\ -4 & 5 & -1\end{array}\right]^{T}=\left[\begin{array}{ccc}9 & -1 & -4 \\ -3 & 4 & 5 \\ 5 & -3 & -1\end{array}\right]$

Theorem : Let A be a square matrix of order n . Then, $\mathrm{A}(\operatorname{adj} \mathrm{A})=|\mathrm{A}| \mathrm{I}_{\mathrm{n}}=(\operatorname{adj} \mathrm{A}) \mathrm{A}$.
Verification : If $\mathrm{A}=\left[\begin{array}{lll}a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33}\end{array}\right]$ be a square matrix of order 3, then,
$\operatorname{adj} \mathrm{A}=\left[\begin{array}{lll}C_{11} & C_{12} & C_{13} \\ C_{21} & C_{22} & C_{23} \\ C_{31} & C_{32} & C_{33}\end{array}\right]^{T}=\left[\begin{array}{lll}C_{11} & C_{21} & C_{31} \\ C_{12} & C_{22} & C_{32} \\ C_{13} & C_{23} & C_{33}\end{array}\right]$,
where C_{ij} denotes the cofactor of a_{ij} in A .
$\mathrm{A}(\operatorname{adj} \mathrm{A})=\left[\begin{array}{lll}a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33}\end{array}\right]\left[\begin{array}{lll}C_{11} & C_{21} & C_{31} \\ C_{12} & C_{22} & C_{32} \\ C_{13} & C_{23} & C_{33}\end{array}\right]$
$=\left[\begin{array}{ccc}|A| & 0 & 0 \\ 0 & |A| & 0 \\ 0 & 0 & |A|\end{array}\right]$
Since, $|A|=a_{11} C_{11}+a_{12} C_{12}+a_{13} C_{13}$ and this is true for the sum of products of the elements of a row (or column) with their corresponding cofactors
$=|\mathrm{A}|\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$
$=|\mathrm{A}| \mathrm{I}_{3}$
Similarly $(\operatorname{adj} \mathrm{A}) \mathrm{A}=|\mathrm{A}| \mathrm{I}_{3}=\mathrm{A}(\operatorname{adj} \mathrm{A})$

Example. Compute the adjoint of the matrix A given by $A=\left[\begin{array}{lll}1 & 4 & 5 \\ 3 & 2 & 6 \\ 0 & 1 & 0\end{array}\right]$ and verify that $\mathrm{A}(\operatorname{adj} \mathrm{A})=|\mathrm{A}| \mathrm{I}=(\operatorname{adj} \mathrm{A})$.
Solution. We have,
$|\mathrm{A}|=\left[\begin{array}{lll}1 & 4 & 5 \\ 3 & 2 & 6 \\ 0 & 1 & 0\end{array}\right]=1(0-6)-4(0-0)+5(3-0)=9$
Let C_{ij} be cofactor of a_{ij} in A . Then, the cofactors of elements of A are given by
$C_{11}=\left|\begin{array}{ll}2 & 6 \\ 1 & 0\end{array}\right|=-6, C_{12}=-\left|\begin{array}{ll}3 & 6 \\ 0 & 0\end{array}\right|=0, C_{13}=\left|\begin{array}{ll}3 & 2 \\ 0 & 1\end{array}\right|=3$,
$\mathrm{C}_{21}=-\left|\begin{array}{ll}4 & 5 \\ 1 & 0\end{array}\right|=5, \mathrm{C}_{22}=\left|\begin{array}{ll}1 & 5 \\ 0 & 0\end{array}\right|=0, \mathrm{C}_{23}=-\left|\begin{array}{ll}1 & 4 \\ 0 & 1\end{array}\right|=-1$
$C_{31}=\left|\begin{array}{ll}4 & 5 \\ 2 & 6\end{array}\right|=14, C_{32}=-\left|\begin{array}{ll}1 & 5 \\ 3 & 6\end{array}\right|=9, C_{33}=\left|\begin{array}{ll}1 & 4 \\ 3 & 2\end{array}\right|=-10$
\therefore Adjoint of A is transpose of the matrix of cofactor matrix associated with A.
$\operatorname{adj} \mathrm{A}=\left[\begin{array}{ccc}9 & -3 & 5 \\ -1 & 4 & -3 \\ -4 & 5 & -1\end{array}\right]^{T}=\left[\begin{array}{ccc}9 & -1 & -4 \\ -3 & 4 & 5 \\ 5 & -3 & -1\end{array}\right]$

2. SINGULAR AND NON-SINGULAR MATRIX

Definition : A square matrix A is said to be singular if $|A|=0$
Example: The determinant $\left|\begin{array}{ll}1 & 2 \\ 4 & 8\end{array}\right|$ is $1 \times 8-2 \times 4=0$,
Hence A is singular matrix.
Definition : A square matrix A is said to be non-singular if $|A| \neq 0$.
Let $A=\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right]$. Then $|A|=\left|\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right|=4-6=-2 \neq 0$
Hence A is a non-singular matrix.

Example: For what value of x the matrix $\mathrm{A}=\left[\begin{array}{ccc}1 & -2 & 3 \\ 1 & 2 & 1 \\ x & 2 & -3\end{array}\right]$ is singular?
Solution: The matrix A is singular, if $|x|=0$

$$
\left|\begin{array}{ccc}
1 & -2 & 3 \\
1 & 2 & 1 \\
x & 2 & -3
\end{array}\right|=0
$$

On expanding along first row, we get
$1\left|\begin{array}{cc}2 & 1 \\ 2 & -3\end{array}\right|-(-2)\left|\begin{array}{cc}1 & 1 \\ x & -3\end{array}\right|+3\left|\begin{array}{cc}1 & 2 \\ x & 2\end{array}\right|=0$
Again simplifying, we get
$(-6-2)+2(-3-x)+3(2-2 x)=0$
$-8-6-2 x+6-6 x=0$
$-8 x-8=0$
$\mathrm{x}=-1$

Example : If A is non-singular matrix of order 3, then $|\operatorname{adj} A|=|A|^{2}$
Solution : Since A is non-singular matrix of order three, then $|A| \neq 0$
We know that $\mathrm{A}(\operatorname{adj} \mathrm{A})=|\mathrm{A}| \mathrm{I}_{3}=(\operatorname{adj} \mathrm{A}) \mathrm{A}$.

$$
\begin{aligned}
& \Rightarrow \mathrm{A}(\operatorname{adj} \mathrm{~A})=\left[\begin{array}{ccc}
|A| & 0 & 0 \\
0 & |A| & 0 \\
0 & 0 & |A|
\end{array}\right] \\
& \Rightarrow|\mathrm{A}(\operatorname{adj} \mathrm{~A})|=\left|\begin{array}{ccc}
|A| & 0 & 0 \\
0 & |A| & 0 \\
0 & 0 & |A|
\end{array}\right| \\
& \Rightarrow|\mathrm{A} \|(\operatorname{adj} \mathrm{A})|=|\mathrm{A}|^{3} \\
& \Rightarrow|(\operatorname{adj} \mathrm{~A})|=|\mathrm{A}|^{2}
\end{aligned}
$$

In fact, the above result is true for any non-singular matrix A of order n.
In general, if A is a non-singular matrix of order n, then $|\operatorname{adj}(A)|=|A|^{n-1}$.

Example : If A is an non-singular matrix of order 3 and $|\mathrm{A}|=5$, then find $|\operatorname{adj} \mathrm{A}|$.
Solution : Here A is an non-singular matrix of order 3.
Therefore , $|\operatorname{adj} \mathrm{A}|=|\mathrm{A}|^{2}$
$|\operatorname{adj} \mathrm{A}|=|\mathrm{A}|^{2} \quad$ by $|(\operatorname{adj} \mathrm{A})|=|\mathrm{A}|^{\mathrm{n}-1}$
($|\mathrm{A}|=5$)
$\Rightarrow|\operatorname{adj} \mathrm{A}|=5^{2}=25$

Theorem : If A and B are nonsingular matrices of the same order, then AB and BA are also nonsingular matrices of the same order.
Theorem : The determinant of the product of matrices is equal to product of their respective determinants, that is $|A B|=|A||B|$, where A and B are square matrices of the same order.

3. INVERSE OF MATRIX

Inverse: A non-singular square matrix of order n is invertible if there exists a square matrix B of the same order such that $A B=I_{n}=B A$.

In such a case, we say that the inverse of A is B and we write, $\mathrm{A}^{-1}=\mathrm{B}$.
Theorem : A square matrix A is invertible if and only if A is non-singular matrix. The inverse of matrix \mathbf{A} is then given by $A^{-1}=\frac{\operatorname{adj} A}{|A|}$

Proof: Let A be a square matrix of order n.
First, let A be invertible, then there exists a square matrix B of order n such that

$$
\begin{aligned}
& \mathrm{AB}=\mathrm{I}_{\mathrm{n}}=\mathrm{BA} \\
& \Rightarrow|\mathrm{AB}|=\left|\mathrm{I}_{\mathrm{n}}\right|
\end{aligned}
$$

$$
|\mathrm{A}||\mathrm{B}|=1
$$

$$
\Rightarrow|\mathrm{A}| \neq 0
$$

$\Rightarrow A$ is non-singular .
Conversely, let A be non-singular, i.e. $|A| \neq 0$
$\mathrm{A}(\operatorname{adj} \mathrm{A})=|\mathrm{A}| \mathrm{I}_{\mathrm{n}}=(\operatorname{adj} \mathrm{A}) \mathrm{A}$
$A\left(\frac{1}{|\mathrm{~A}|} \operatorname{adj} A\right)=\left(\frac{1}{|\mathrm{~A}|} \operatorname{adj} A\right) A$

$$
(\mathrm{As}|\mathrm{~A}| \neq 0)
$$

$\Rightarrow \mathrm{AB}=\mathrm{I}_{\mathrm{n}}=\mathrm{BA}$ where $\mathrm{B}=\frac{1}{|\mathrm{~A}|} \operatorname{adj} A$
Therefore, A is invertible.

And inverse of A is given by $A^{-1}=\frac{\operatorname{adj} A}{|A|}$
Example: Compute the inverse of the matrix A given by A $=\left[\begin{array}{lll}1 & 3 & 3 \\ 1 & 4 & 3 \\ 1 & 3 & 4\end{array}\right]$.
Solution: Firstly we evaluate the determinant of the matrix
$|A|=1(16-9)-3(4-3)+3(3-4)=1 \neq 0$, so inverse exists.
$A^{-1}=\frac{\operatorname{adj} A}{|\mathrm{~A}|}$
Let C_{ij} be cofactor of a_{ij} in A . Then, the cofactors of elements of A are given by
$\mathrm{C}_{11}=\left|\begin{array}{ll}4 & 3 \\ 3 & 4\end{array}\right|=7, \mathrm{C}_{12}=-\left|\begin{array}{ll}1 & 3 \\ 1 & 4\end{array}\right|=-1, \mathrm{C}_{13}=\left|\begin{array}{ll}1 & 4 \\ 1 & 3\end{array}\right|=-1$
$C_{21}=-\left|\begin{array}{ll}3 & 3 \\ 3 & 4\end{array}\right|=-3, C_{22}=\left|\begin{array}{ll}1 & 3 \\ 1 & 4\end{array}\right|=1, C_{23}=-\left|\begin{array}{ll}1 & 3 \\ 1 & 3\end{array}\right|=0$,
$C_{31}=\left|\begin{array}{ll}3 & 3 \\ 4 & 3\end{array}\right|=-3, C_{32}=-\left|\begin{array}{ll}1 & 3 \\ 1 & 3\end{array}\right|=0, C_{33}=\left|\begin{array}{ll}1 & 3 \\ 1 & 4\end{array}\right|=1$

So, the cofactor matrix is $\mathrm{C}_{\mathrm{ij}}=\left[\begin{array}{ccc}7 & -1 & -1 \\ -3 & 1 & 0 \\ -3 & 0 & 1\end{array}\right]$
$\operatorname{Adj} \mathrm{A}=C_{i j}{ }^{T}=\left[\begin{array}{ccc}7 & -1 & -1 \\ -3 & 1 & 0 \\ -3 & 0 & 1\end{array}\right]^{T}=\left[\begin{array}{ccc}7 & -3 & -3 \\ -1 & 1 & 0 \\ -1 & 0 & 1\end{array}\right]$
Therefore, $A^{-1}=\frac{1}{1}\left[\begin{array}{ccc}7 & -3 & -3 \\ -1 & 1 & 0 \\ -1 & 0 & 1\end{array}\right]=\left[\begin{array}{ccc}7 & -3 & -3 \\ -1 & 1 & 0 \\ -1 & 0 & 1\end{array}\right]$

The Inverse of a Matrix when it satisfies some Matrix Equation $\mathbf{f}(\mathbf{A})=\mathbf{0}$.
Example: Show that $A=\left[\begin{array}{ll}4 & -3 \\ 5 & -2\end{array}\right]$ satisfies the equation $A^{2}-6 A+17 I=0$. Hence, find A^{-1}.
Solution : Here, $A=\left[\begin{array}{ll}4 & -3 \\ 5 & -2\end{array}\right]$
Therefore , $\mathrm{A}^{2}=\mathrm{AA}=\left[\begin{array}{cc}2 & -3 \\ 3 & 4\end{array}\right]\left[\begin{array}{cc}2 & -3 \\ 3 & 4\end{array}\right]=\left[\begin{array}{cc}4-9 & -6-12 \\ 6+12 & -9+16\end{array}\right]=\left[\begin{array}{cc}-5 & -18 \\ 18 & 7\end{array}\right]$
$-6 \mathrm{~A}=(-6)\left[\begin{array}{cc}2 & -3 \\ 3 & 4\end{array}\right]=\left[\begin{array}{cc}-12 & 18 \\ -18 & -24\end{array}\right]$
And $17 \mathrm{I}=17\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]=\left[\begin{array}{cc}17 & 0 \\ 0 & 17\end{array}\right]$

Therefore
$\mathrm{A}^{2}-6 \mathrm{~A}+17 \mathrm{I}_{2}=\left[\begin{array}{cc}-5-12+17 & -18+18+0 \\ 18-18+0 & 7-24+17\end{array}\right]=\left[\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right]=0$
Thus, the matrix A satisfies the equation $x^{2}-6 x+17=0$
Now $A^{2}-6 A+17 I_{2}=0$
Which implies $\mathrm{A}^{2}-6 \mathrm{~A}=-17 \mathrm{I}_{2}$
$A^{-1}\left(A^{2}-6 A\right)=A^{-1}\left(-17 I_{2}\right) \quad$ (Pre-multiplying both sides by A^{-1})
$A^{-1} A^{2}-6 A^{-1} A=-17 A^{-1} I_{2}$
$A-6 I_{2}=-17 A^{-1}$
$\mathrm{A}^{-1}=-\frac{1}{17}\left(\mathrm{~A}-6 \mathrm{I}_{2}\right)$
$\mathrm{A}^{-1}=\frac{1}{17}\left(6 \mathrm{I}_{2}-\mathrm{A}\right)$
$=\frac{1}{17}\left\{\left[\begin{array}{ll}6 & 0 \\ 0 & 6\end{array}\right]-\left[\begin{array}{cc}2 & -3 \\ 3 & 4\end{array}\right]\right\}$
$=\frac{1}{17}\left[\begin{array}{cc}4 & 3 \\ -3 & 2\end{array}\right]$

To Solve Matrix Equations :

Find the matrix X for which $\left[\begin{array}{ll}1 & -4 \\ 3 & -2\end{array}\right] X=\left[\begin{array}{cc}-16 & -6 \\ 7 & 2\end{array}\right]$
Solution : Let $\mathrm{P}=\left[\begin{array}{ll}1 & -4 \\ 3 & -2\end{array}\right]$ and $\mathrm{Q}=\left[\begin{array}{cc}-16 & -6 \\ 7 & 2\end{array}\right]$. Then the given matrix equation is $\mathrm{PX}=\mathrm{Q}$.
Therefore, $|\mathrm{P}|=\left|\begin{array}{ll}1 & -4 \\ 3 & -2\end{array}\right|=-2+12=10 \neq 0$.
So, P is an invertible matrix. Let C_{ij} be cofactors of a_{ij} in $\mathrm{P}=\left[\mathrm{a}_{\mathrm{ij}}\right]$.
Therefore, $\mathrm{C}_{11}=-2, \mathrm{C}_{12}-3$
$\mathrm{C}_{21} 4$ and $\mathrm{C}_{22}=1$
Therefore, adj $\mathrm{P}=\left[\begin{array}{cc}-2 & -3 \\ 4 & 1\end{array}\right]^{T}$
$=\left[\begin{array}{ll}-2 & 4 \\ -3 & 1\end{array}\right]$
Therefore $\mathrm{P}^{-1}=\frac{1}{|P|} \operatorname{adj} \mathrm{P}=\frac{1}{10}\left[\begin{array}{ll}-2 & 4 \\ -3 & 1\end{array}\right]$
Now $\mathrm{PX}=\mathrm{Q}$
Which implies $\mathrm{P}^{-1}(\mathrm{PX})=\mathrm{P}^{-1} \mathrm{Q}$
($\mathrm{P}^{-1} \mathrm{P}$) $\mathrm{X}=\mathrm{P}^{-1} \mathrm{Q}$

$$
\begin{aligned}
& \text { I X }=\mathrm{P}^{-1} \mathrm{Q} \\
& \Rightarrow \mathrm{X}=\mathrm{P}^{-1} \mathrm{Q} \\
& \Rightarrow \mathrm{X}=\frac{1}{10}\left[\begin{array}{ll}
-2 & 4 \\
-3 & 1
\end{array}\right]\left[\begin{array}{cc}
-16 & -6 \\
7 & 2
\end{array}\right] \\
& =\frac{1}{10}\left[\begin{array}{cc}
32+28 & 12+8 \\
48+7 & 18+2
\end{array}\right] \\
& =\left[\begin{array}{cc}
6 & 2 \\
\frac{11}{2} & 2
\end{array}\right]
\end{aligned}
$$

Example : If $A=\left[\begin{array}{ccc}2 & -1 & 1 \\ -1 & 2 & -1 \\ 1 & -1 & 2\end{array}\right]$, find $(\operatorname{adj} A)^{-1}$
Solution : We have, $\mathrm{A}=\left[\begin{array}{ccc}2 & -1 & 1 \\ -1 & 2 & -1 \\ 1 & -1 & 2\end{array}\right]$
Therefore, $|\mathrm{A}|=2(4-1)+1(-2+1)+1(1-2)=4 \neq 0$
On re-arranging the formula of A^{-1} we obtain $(\operatorname{adj} \mathrm{A})^{-1}=\mathrm{A} /|\mathrm{A}|$
Therefore $(\operatorname{adj} A)^{-1}=\frac{1}{4}\left[\begin{array}{ccc}2 & -1 & 1 \\ -1 & 2 & -1 \\ 1 & -1 & 2\end{array}\right]$

Summary:

- If $\mathrm{A}=\left[\begin{array}{lll}a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33}\end{array}\right]$ then, $\mathrm{Adj} \mathrm{A}=\left[\begin{array}{lll}C_{11} & C_{21} & C_{31} \\ C_{12} & C_{22} & C_{32} \\ C_{13} & C_{23} & C_{33}\end{array}\right]$, where C_{ij} denotes the cofactor of $a_{i j}$.
- $A(\operatorname{adj} A)=|A| I_{n}=(\operatorname{adj} A) A$ where A is a square matrix of order n
- A square matrix A is said to be singular if $|\mathrm{A}|=0$.
- A square matrix A is said to be non- singular if $|\mathrm{A}| \neq 0$.
- If A is a non-singular matrix of order n, then $|\operatorname{adj}(A)|=|A|^{n-1}$.
- If $A B=I_{n}=B A$ where B is a square matrix , then B is called the inverse of A and we write, $A^{-1}=B$
- $\left(A^{-1}\right)^{-1}=\mathrm{A}$
- A square matrix has an inverse if and only if it is non-singular.
- $A^{-1}=\frac{\operatorname{adj} A}{|\mathrm{~A}|}$

