1. Details of Module and its structure

Module Detail	Mathematics
Subject Name	Mathematics 03 (Class XII, Semester - 1)
Course Name	Determinant - Part 3
Module Name/Title	lemh_10403
Module Id	Basic knowledge about Applications of Determinants to Coordinate Geometry
Pre-requisites	After going through this lesson, the learners will be able to understand the following:
Objectives	\bullet Minors and Cofactors
	© Collinear points

2. Development Team

Role	Name	Affiliation
National Coordinators (NMC)	MOOC Prof. Amarendra P. Behera	CIET, NCERT, New Delhi
Program Coordinator	Dr. Indu Kumar	CIET, NCERT, New Delhi
Course Coordinator	Prof. Til Prasad Sharma	DESM, NCERT, New Delhi
Subject Coordinator	Anjali Khurana	CIET, NCERT, New Delhi
Subject Matter Expert (SME)	Dr. Monika Sharma	Shiv Nadar University, Noida
Revised by	Manpreet Kaur Bhatia	IINTM College , GGSIP University
Review Team	Prof. Bhim Prakash Sarrah Prof. V.P Singh (Retd.) Prof. SKS Gautam (Retd.)	Assam University, Tezpur DESM, NCERT, New Delhi DESM, NCERT, New Delhi

TABLE OF CONTENT:

1. Minors

- Definition

2. Cofactors

- Definition

3. Applications of Determinants to Coordinate Geometry

- Area of a Triangle
- Condition of Collinear of Three Points
- Equation of a Line Passing Through Two Given Points

4. Summary

1. MINORS

Definition: Let $\mathrm{A}=\left|a_{i j}\right|$ be a determinant of order n . The minor M_{ij} of $a_{i j}$ in A is the determinant of order ($n-1$) obtained by leaving $\mathrm{i}^{\text {th }}$ row and $\mathrm{j}^{\text {th }}$ column of A .

Let's understand the Minor with an example.
Example : If A= $\left|\begin{array}{ll}1 & 2 \\ 4 & 5\end{array}\right|$
then
minor M_{11} of $a_{11}=5$, minor M_{12} of $a_{12}=4$,
minor M_{21} of $a_{21}=2$, minor M_{22} of $a_{22}=1$
Example: If A $=\left|\begin{array}{ccc}1 & -2 & 3 \\ 1 & 2 & 1 \\ 2 & 2 & -3\end{array}\right|$
then let's find out minors of their elements.
Minor M_{11} of $a_{11}=$ Determinant 2×2 obtained by leaving first row and first column of A.

Minor M_{11} of $a_{11}=\left|\begin{array}{cc}2 & 1 \\ 2 & -3\end{array}\right|=-6-2=-8$
Similarly, we obtain other minors
Minor M_{12} of $a_{12}=\left|\begin{array}{cc}1 & 1 \\ 2 & -3\end{array}\right|=-3-2=-5$
Minor M_{13} of $a_{13}=\left|\begin{array}{ll}1 & 2 \\ 2 & 2\end{array}\right|=2-4=-2$
Minor M_{21} of $a_{21}=\left|\begin{array}{cc}-2 & 3 \\ 2 & -3\end{array}\right|=6-6=0$

Exercise:

Similarly find Minor \mathbf{M}_{22}, Minor \mathbf{M}_{23}, Minor M_{31}, Minor M_{32}, Minor M_{33}.

2. COFACTORS

Definition :Let $\mathrm{A}=\left|a_{i j}\right|$ be a determinant of order n . The cofactor C_{ij} of $a_{i j}$ in A is $(-1)^{\mathrm{i}+\mathrm{j}}$ times the determinant of order ($n-1$) obtained by leaving $\mathrm{i}^{\text {th }}$ row and $\mathrm{j}^{\text {th }}$ column of A .

Therefore,
The cofactor C_{ij} of $a_{i j}$ in $\mathrm{A}=(-1)^{\mathrm{i}+\mathrm{j}} \mathrm{M}_{\mathrm{ij}}$, where M_{ij} is Minor of $a_{i j} \mathrm{in} \mathrm{A}$.
Thus, we have, $\mathrm{C}_{\mathrm{ij}}=\mathrm{M}_{\mathrm{ij}}$, if $\mathrm{i}+\mathrm{j}$ is even and
$\mathrm{C}_{\mathrm{ij}}=-\mathrm{M}_{\mathrm{ij}}$, if $\mathrm{i}+\mathrm{j}$ is odd.
Let's explore the cofactor through an example

Example: If A=|ll $\begin{aligned} & 1 \\ & 4\end{aligned} 5$ 5 , then
Cofactor C_{11} of $a_{11}=(-1)^{1+1} \mathrm{M}_{11}=\mathrm{M}_{11}=5$,

Cofactor C_{12} of $a_{12}=(-1)^{1+2} \mathrm{M}_{12}=-\mathrm{M}_{12}=-4$,

CofactorC C_{21} of $a_{21}=(-1)^{2+1} \mathrm{M}_{21}=-\mathrm{M}_{21}=-2$,

Cofactor C_{22} of $a_{22}=(-1)^{2+2} \mathrm{M}_{22}=\mathrm{M}_{22}=1$.

Note: Cofactor $C_{i j}=-\mathrm{M}_{\mathrm{i} \mathrm{j}}$, if $\mathrm{i}+\mathrm{j}$ is odd and
$C_{i j}=\mathrm{M}_{\mathrm{ij}}$, if $\mathrm{i}+\mathrm{j}$ is even.
Example: If $A=\left[\begin{array}{ccc}1 & -2 & 3 \\ 1 & 2 & 1 \\ 2 & 2 & -3\end{array}\right]$,
then let's find out cofactors of some of its elements.

Cofactors C_{11} of $a_{11}=(-1)^{1+1} \mathrm{M}_{11}=\mathrm{M}_{11}=\left|\begin{array}{cc}2 & 1 \\ 2 & -3\end{array}\right|=-8$
Cofactors C_{12} of $a_{12}=(-1)^{1+2} \mathrm{M}_{12}=-\mathrm{M}_{12}=-\left|\begin{array}{cc}1 & 1 \\ 2 & -3\end{array}\right|=\mathbf{5}$
Cofactors C_{13} of $a_{13}=(-1)^{1+3} \mathrm{M}_{13}=\mathrm{M}_{13}=\left|\begin{array}{ll}1 & 2 \\ 2 & 2\end{array}\right|=\mathbf{- 2}$
Cofactors C_{21} of $a_{21}=(-1)^{2+1} \mathrm{M}_{21}=-\mathrm{M}_{21}=-\left|\begin{array}{cc}-2 & 3 \\ 2 & -3\end{array}\right|=0$

Similarly, one can find cofactors of other elements .

Exercise:

Find cofactors $\mathrm{C}_{22}, \mathrm{C}_{23}, \mathrm{C}_{31}, \mathrm{C}_{32}$ and C_{33}.

Note:

1) The value of determinant A is obtained by the sum of products of elements of a row (or a column) with corresponding cofactors.

For example, $|A|=a_{11} C_{11}+a_{12} C_{12}+a_{13} C_{13}$.
(Recall that we have expanded the determinant in Module 1 using the same technique)
2) If elements of a row (or column) are multiplied with the cofactors of any other row (or column), then their sum is zero

For example, $a_{11} C_{21}+a_{12} C_{22}+a_{13} C_{23}=0$

3. APPLICATIONS OF DETERMINANTS TO COORDINATE GEOMETRY:

- Area of a Triangle

We know from the knowledge of co-ordinate geometry that the area of a triangle with vertices $\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right),\left(\mathrm{x}_{2}, \mathrm{y}_{2}\right),\left(\mathrm{x}_{3}, \mathrm{y}_{3}\right)$ is given by the expression
$=\frac{1}{2}\left[\mathrm{x}_{1}\left(\mathrm{y}_{2}-\mathrm{y}_{3}\right)+\mathrm{x}_{2}\left(\mathrm{y}_{3}-\mathrm{y}_{1}\right)+\mathrm{x}_{3}\left(\mathrm{y}_{1}-\mathrm{y}_{2}\right)\right]$.

This expression can also be written in the form of determinant as det $=\frac{1}{2}\left|\begin{array}{lll}x_{1} & y_{1} & 1 \\ x_{2} & y_{2} & 1 \\ x_{3} & y_{3} & 1\end{array}\right|$ $=\frac{1}{2}\left[\mathrm{x}_{1}\left(\mathrm{y}_{2}-\mathrm{y}_{3}\right)+\mathrm{x}_{2}\left(\mathrm{y}_{3}-\mathrm{y}_{1}\right)+\mathrm{x}_{3}\left(\mathrm{y}_{1}-\mathrm{y}_{2}\right)\right]$

Therefore ,the area of triangle $\mathrm{ABC}=$ the absolute value of $\frac{1}{2}\left|\begin{array}{lll}x_{1} & y_{1} & 1 \\ x_{2} & y_{2} & 1 \\ x_{3} & y_{3} & 1\end{array}\right|$

Example: Find the area of the triangle whose vertices are $(3,8),(-4,2)$ and $(5,1)$.
Solution: The area of a triangle is given by the absolute value of $\frac{1}{2}\left|\begin{array}{ccc}3 & 8 & 1 \\ -4 & 2 & 1 \\ 5 & 1 & 1\end{array}\right|$
$=\frac{1}{2}[3(2-1)-8(-4-5)+1(-4-10)]$
$=\frac{1}{2}(3+72-14)=\frac{61}{2}$ sq. units
Example: Using determinants, find the area of the triangle whose vertices are $(-3,5),(7,2)$ and (3,-6).

Solution: The area of a triangle with vertices $(-3,5),(3,-6)$ and $(7,2)$ is given by the absolute value of $\frac{1}{2}\left|\begin{array}{ccc}-3 & 5 & 1 \\ 7 & 2 & 1 \\ 3 & -6 & 1\end{array}\right|$
$\Delta=\frac{1}{2}[(-3)(2+6)-5(7-3)+1(-42-6)]$
$=\frac{1}{2}(-24-20-48)$
$=\frac{1}{2}(-92)=-46$
Area $=|-46|=46$ sq. units

- Condition of collinear of three points:

Let the three points be $\mathrm{A}\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right), \mathrm{B}\left(\mathrm{x}_{2}, \mathrm{y}_{2}\right)$ and $\mathrm{C}\left(\mathrm{x}_{3}, \mathrm{y}_{3}\right)$. The given points A, B and C will be collinear if and only if area of $\triangle A B C=0$.

Which implies area of triangle formed by three collinear points $\mathrm{A}, \mathrm{B}, \mathrm{C}$ is zero if and only if $\Delta=\frac{1}{2}\left|\begin{array}{lll}x_{1} & y_{1} & 1 \\ x_{2} & y_{2} & 1 \\ x_{3} & y_{3} & 1\end{array}\right|=0$

Example: Prove that the points $\mathrm{P}(\mathrm{a}, \mathrm{b}+\mathrm{c}), \mathrm{Q}(\mathrm{b}, \mathrm{c}+\mathrm{a})$ and $\mathrm{R}(\mathrm{c}, \mathrm{a}+\mathrm{b})$ are collinear.
Solution. The given points P, Q and R are collinear if
$\Delta=\left|\begin{array}{lll}a & b+c & 1 \\ b & c+a & 1 \\ c & a+b & 1\end{array}\right|=0$
$\Rightarrow \Delta=\left|\begin{array}{lll}a & a+b+c & 1 \\ b & b+c+a & 1 \\ c & c+a+b & 1\end{array}\right|$
(operating $\mathrm{C}_{2} \rightarrow \mathrm{C}_{2}+\mathrm{C}_{1}$)
$\Rightarrow \Delta=(\mathrm{a}+\mathrm{b}+\mathrm{c})\left|\begin{array}{lll}a & 1 & 1 \\ b & 1 & 1 \\ c & 1 & 1\end{array}\right|$
$\Rightarrow \Delta=(\mathrm{a}+\mathrm{b}+\mathrm{c}) \times 0$
(Taking common $(a+b+c)$ from C_{2})
(because $\mathrm{C}_{2}, \mathrm{C}_{3}$ are identical)
$\Rightarrow \Delta=0$

So, the points $\mathrm{P}(\mathrm{a}, \mathrm{b}+\mathrm{c}), \mathrm{Q}(\mathrm{b}, \mathrm{c}+\mathrm{a})$ and $\mathrm{R}(\mathrm{c}, \mathrm{a}+\mathrm{b})$ are collinear.
Example: If the points $(2,-3),(a,-1)$ and $(0,4)$ are collinear, find the value of a.

Solution: | $\left\|\begin{array}{ccc}2 & -3 & 1 \\ a & -1 & 1 \\ 0 & 4 & 1\end{array}\right\|=0$ |
| :--- |
| Applying $\mathrm{R}_{2} \rightarrow \mathrm{R}_{2}-\mathrm{R}_{1}$ |
| $\left\|\begin{array}{ccc}2 & -3 & 1 \\ a-2 & 2 & 0 \\ -2 & 7 & 0\end{array}\right\|=0 \quad$ poinen collinear, the |
| $\left\|\begin{array}{cc}a-2 & 2 \\ -2 & 7\end{array}\right\|=0$ |
| $7 \mathrm{a}-14+4=0$ |

$a=\frac{10}{7}$.

(C).Equation of a line passing through two given points

Let the two points be $\mathrm{A}\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)$ and $\mathrm{B}\left(\mathrm{x}_{2}, \mathrm{y}_{2}\right)$. Let $\mathrm{P}(\mathrm{x}, \mathrm{y})$ be any point on the line joining A and B.

Then, points P, A and B are collinear. Therefore,
$\left|\begin{array}{ccc}x & y & 1 \\ x_{1} & y_{1} & 1 \\ x_{2} & y_{2} & 1\end{array}\right|=0$

This gives the equation of the line joining points $\mathrm{A}\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)$ and $\mathrm{B}\left(\mathrm{x}_{2}, \mathrm{y}_{2}\right.$ i.e.,
$\left|\begin{array}{lll}x & y & 1 \\ x_{1} & y_{1} & 1 \\ x_{2} & y_{2} & 1\end{array}\right|=0$

Example : Find the equation of the line joining the points A (3,1) and B(9,3) using determinants.

Solution : Let $\mathrm{P}(\mathrm{x}, \mathrm{y})$ be any point on the line joining the points A and B , then the points A, B, and P are collinear

$$
\Rightarrow\left|\begin{array}{lll}
3 & 1 & 1 \\
9 & 3 & 1 \\
x & y & 1
\end{array}\right|=0 \quad\left(\text { operating } \mathrm{R}_{2} \rightarrow \mathrm{R}_{2}-\mathrm{R}_{1} \text { and } \mathrm{R}_{3} \rightarrow \mathrm{R}_{3}-\mathrm{R}_{1}\right)
$$

$\Rightarrow\left|\begin{array}{ccc}3 & 1 & 1 \\ 6 & 2 & 0 \\ x-3 & y-1 & 0\end{array}\right|=0$
$\Rightarrow 1[6(\mathrm{y}-1)-2(\mathrm{x}-3)]=0$
expanding the determinant along C_{3}.
$\Rightarrow 6 y-2 x=0$
$\Rightarrow x-3 y=0$, which is the required equation of the line $A B$.
Example: Consider the points $\mathrm{A}(3,6), \mathrm{B}(6,9)$ and $\mathrm{C}(9,12)$. Justify whether the points are collinear or not.

Solution : By condition of collinearity, the points will be collinear if
$\left|\begin{array}{ccc}3 & 6 & 1 \\ 6 & 9 & 1 \\ 9 & 12 & 1\end{array}\right|=0$

Solving the determinant we get,
$\Delta=3^{2}\left|\begin{array}{lll}1 & 2 & 1 \\ 2 & 3 & 1 \\ 3 & 4 & 1\end{array}\right|$
$\Delta=9[1(3-4)-2(2-3)+1(8-9)]$
$\Delta=9(-1+2-1)=9 \times 0$
$\Delta=0$

Thus, the points are collinear.
Example: If $\mathrm{A}(1,3)$ and $\mathrm{B}(0,0)$ and $\mathrm{C}(\mathrm{k}, 0)$ are three points such that area of a triangle ABC is 3 sq.units, then find the value of k .

Solution :
Since Area of triangle $A B C=3$, so $\frac{1}{2}\left|\begin{array}{lll}1 & 3 & 1 \\ 0 & 0 & 1 \\ k & 0 & 1\end{array}\right|=3$
$\Rightarrow \frac{1}{2}[1(0-0)-3(0-\mathrm{k})+1(0-0)]=3$
$\Rightarrow 3 \mathrm{k}=6$

Thus, the value of $\mathrm{k}=2$.

Example: If the points $A(1,3)$ and $B(0,0)$ and $C(k, 0)$ are collinear, then find the value of k.

Solution :

Since A, B and C are collinear, so by condition of collinearity,
$\left|\begin{array}{lll}1 & 3 & 1 \\ 0 & 0 & 1 \\ k & 0 & 1\end{array}\right|=0$
$\Rightarrow[1(0-0)-3(0-\mathrm{k})+1(0-0)]=0$
$\Rightarrow 3 \mathrm{k}=0$
Thus, the value of $\mathrm{k}=0$.

Example : If $\mathrm{A}\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right), \mathrm{B}\left(\mathrm{x}_{2}, \mathrm{y}_{2}\right), \mathrm{C}\left(\mathrm{x}_{3}, \mathrm{y}_{3}\right)$ are the vertices of an equilateral triangle with each side equal to a units, then prove that $\left|\begin{array}{lll}x_{1} & y_{1} & 2 \\ x_{2} & y_{2} & 2 \\ x_{3} & y_{3} & 2\end{array}\right|^{2}=3 \mathrm{a}^{4}$.

Solution : We know that the area of an equilateral triangle with side ' a ' units $=\sqrt{3} 4 a^{2}$ sq. units.

Therefore , the absolute value of $\frac{1}{2}\left|\begin{array}{lll}x_{1} & y_{1} & 1 \\ x_{2} & y_{2} & 1 \\ x_{3} & y_{3} & 1\end{array}\right|=\frac{\sqrt{3}}{4} \mathrm{a}^{2}$ sq. units.
which implies the absolute value of $2\left|\begin{array}{lll}x_{1} & y_{1} & 1 \\ x_{2} & y_{2} & 1 \\ x_{3} & y_{3} & 1\end{array}\right|=\sqrt{3} \mathrm{a}^{2}$ sq. units.
$\Rightarrow\left|\begin{array}{lll}x_{1} & y_{1} & 2 \\ x_{2} & y_{2} & 2 \\ x_{3} & y_{3} & 2\end{array}\right|^{2}=3 \mathrm{a}^{4}$, as required.

Summary:

- The minor M_{ij} of an element $a_{i j}$ in matrix A is the determinant obtained by leaving $\mathrm{i}^{\text {th }}$ row and $\mathrm{j}^{\text {th }}$ column of A .
- The cofactor of an element $a_{i j}$ in matrix A is given by $\mathrm{C}_{\mathrm{ij}}=(-1)^{\mathrm{i}+\mathrm{j}} \mathrm{M}_{\mathrm{ij}}$.
- The value of determinant A is obtained by the sum of products of elements of a row (or a column) with corresponding cofactors. For example, $|A|=a_{11} C_{11}+a_{12} C_{12}+a_{13} C_{13}$.
- If elements of a row (or column) are multiplied with the cofactors of any other row (or column), then their sum is zero. For example, $a_{11} C_{21}+a_{12} C_{22}+a_{13} C_{23}=0$.
- Area of a triangle with vertices $\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right),\left(\mathrm{x}_{2}, \mathrm{y}_{2}\right),\left(\mathrm{x}_{3}, \mathrm{y}_{3}\right)$ is given by the expression

$$
\text { Area }==\frac{1}{2}\left|\begin{array}{lll}
x_{1} & y_{1} & 1 \\
x_{2} & y_{2} & 1 \\
x_{3} & y_{3} & 1
\end{array}\right|
$$

- Three points be $\mathrm{A}\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right), \mathrm{B}\left(\mathrm{x}_{2}, \mathrm{y}_{2}\right)$ and $\mathrm{C}\left(\mathrm{x}_{3}, \mathrm{y}_{3}\right)$ will be collinear if and only if $\frac{1}{2}\left|\begin{array}{lll}x_{1} & y_{1} & 1 \\ x_{2} & y_{2} & 1 \\ x_{3} & y_{3} & 1\end{array}\right|=0$
- The equation of the line joining points $\mathrm{A}\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)$ and $\mathrm{B}\left(\mathrm{x}_{2}, \mathrm{y}_{2}\right)$ is given by the expression

$$
\left|\begin{array}{lll}
x & y & 1 \\
x_{1} & y_{1} & 1 \\
x_{2} & y_{2} & 1
\end{array}\right|=0
$$

