1. Details of Module and its structure

Module Detail					
Subject Name	Mathematics				
Course Name	Mathematics 03 (Class XII, Semester - 1)				
Module Name/Title	Determinant - Part 3				
Module Id	lemh_10403				
Pre-requisites	Basic knowledge about Applications of Determinants to Coordinate Geometry				
Objectives	 After going through this lesson, the learners will be able to understand the following: Minors and Cofactors Area of Triangle Collinear points 				
Keywords	Minors, Cofactors, Area of a Triangle, collinear points				

2. Development Team

Role	Name	Affiliation		
National MOOC Coordinators (NMC)	Prof. Amarendra P. Behera	CIET, NCERT, New Delhi		
Program Coordinator	Dr. Indu Kumar	CIET, NCERT, New Delhi		
Course Coordinator	Prof. Til Prasad Sharma	DESM, NCERT, New Delhi		
Subject Coordinator	Anjali Khurana	CIET, NCERT, New Delhi		
Subject Matter Expert (SME)	Dr. Monika Sharma	Shiv Nadar University, Noida		
Revised by	Manpreet Kaur Bhatia	IINTM College , GGSIP		
		University		
Review Team	Prof. Bhim Prakash Sarrah	Assam University, Tezpur		
	Prof. V.P Singh (Retd.)	DESM, NCERT, New Delhi		
	Prof. SKS Gautam (Retd.)	DESM, NCERT, New Delhi		

TABLE OF CONTENT:

- 1. Minors
 - Definition
- 2. Cofactors
 - Definition
- 3. Applications of Determinants to Coordinate Geometry
 - Area of a Triangle
 - Condition of Collinear of Three Points
 - Equation of a Line Passing Through Two Given Points
- 4. Summary

1. MINORS

Definition: Let $A = |a_{ij}|$ be a determinant of order n. The minor M_{ij} of a_{ij} in A is the determinant of order (n-1) obtained by leaving ith row and jth column of A.

Let's understand the Minor with an example.

Example : If $A = \begin{vmatrix} 1 & 2 \\ 4 & 5 \end{vmatrix}$

then

minor M_{11} of $a_{11} = 5$, minor M_{12} of $a_{12} = 4$,

minor M_{21} of $a_{21} = 2$, minor M_{22} of $a_{22} = 1$

Example: If
$$A = \begin{vmatrix} 1 & -2 & 3 \\ 1 & 2 & 1 \\ 2 & 2 & -3 \end{vmatrix}$$

then let's find out minors of their elements.

Minor M_{11} of $a_{11^{=}}$ Determinant 2 x 2 obtained by leaving first row and first column of A.

Minor M₁₁ of $a_{11} = \begin{vmatrix} 2 & 1 \\ 2 & -3 \end{vmatrix} = -6-2 = -8$

Similarly, we obtain other minors

Minor M₁₂ of $a_{12=} \begin{vmatrix} 1 & 1 \\ 2 & -3 \end{vmatrix} = -3 - 2 = -5$ Minor M₁₃ of $a_{13=} \begin{vmatrix} 1 & 2 \\ 2 & 2 \end{vmatrix} = 2 - 4 = -2$ Minor M₂₁ of $a_{21=} \begin{vmatrix} -2 & 3 \\ 2 & -3 \end{vmatrix} = 6 - 6 = 0$

Exercise:

Similarly find Minor M₂₂, Minor M₂₃, Minor M₃₁, Minor M₃₂, Minor M₃₃.

2. COFACTORS

Definition :Let $A = |a_{ij}|$ be a determinant of order n. The cofactor C_{ij} of a_{ij} in A is $(-1)^{i+j}$ times the determinant of order (n-1) obtained by leaving ith row and jth column of A.

Therefore,

The cofactor C_{ij} of a_{ij} in A = $(-1)^{i+j} M_{ij}$, where M_{ij} is Minor of a_{ij} in A.

Thus, we have, $C_{ij} = M_{ij}$, if i+j is even and

 C_{ij} = - M_{ij} , if i+j is odd.

Let's explore the cofactor through an example

Example: If $A = \begin{vmatrix} 1 & 2 \\ 4 & 5 \end{vmatrix}$, then

Cofactor C_{11} of $a_{11} = (-1)^{1+1} M_{11} = M_{11} = 5$,

Cofactor C_{12} of $a_{12} = (-1)^{1+2} M_{12} = -M_{12} = -4$,

CofactorC₂₁ of $a_{21} = (-1)^{2+1} M_{21} = -M_{21} = -2$,

Cofactor C₂₂ of $a_{22} = (-1)^{2+2} M_{22} = M_{22} = 1$.

Note: Cofactor $C_{ij} = -M_{ij}$, if i+j is odd and

 $C_{ij} = M_{ij}$, if i+j is even.

Example: If $A = \begin{bmatrix} 1 & -2 & 3 \\ 1 & 2 & 1 \\ 2 & 2 & -3 \end{bmatrix}$,

then let's find out cofactors of some of its elements.

Cofactors C₁₁ of
$$a_{11} = (-1)^{1+1}M_{11} = M_{11} = \begin{vmatrix} 2 & 1 \\ 2 & -3 \end{vmatrix} = -8$$

Cofactors C₁₂ of a_{12} (-1)¹⁺²M₁₂ = -M₁₂ = - $\begin{vmatrix} 1 & 1 \\ 2 & -3 \end{vmatrix}$ = 5

Cofactors C₁₃of $a_{13} = (-1)^{1+3}M_{13} = M_{13} = \begin{vmatrix} 1 & 2 \\ 2 & 2 \end{vmatrix} = -2$

Cofactors C₂₁ of $a_{21} = (-1)^{2+1}M_{21} = -M_{21} = -\begin{vmatrix} -2 & 3 \\ 2 & -3 \end{vmatrix} = 0$

Similarly, one can find cofactors of other elements.

Exercise:

Find cofactors C_{22} , C_{23} , C_{31} , C_{32} and C_{33} .

Note:

The value of determinant A is obtained by the sum of products of elements of a row (or a column) with corresponding cofactors.

For example, $|A| = a_{11}C_{11} + a_{12}C_{12} + a_{13}C_{13}$.

(Recall that we have expanded the determinant in Module 1 using the same technique)

If elements of a row (or column) are multiplied with the cofactors of any other row (or column), then their sum is zero

For example, $a_{11}C_{21} + a_{12}C_{22} + a_{13}C_{23} = 0$

3. APPLICATIONS OF DETERMINANTS TO COORDINATE GEOMETRY:

• Area of a Triangle

We know from the knowledge of co-ordinate geometry that the area of a triangle with vertices $(x_1, y_1), (x_2, y_2), (x_3, y_3)$ is given by the expression

$$= \frac{1}{2} \left[x_{1(y_2 - y_3)} + x_2(y_3 - y_1) + x_3(y_1 - y_2) \right].$$

This expression can also be written in the form of determinant as $det = \frac{1}{2} \begin{vmatrix} x_1 & y_1 & 1 \\ x_2 & y_2 & 1 \\ x_3 & y_3 & 1 \end{vmatrix}$

 $= \frac{1}{2} \left[x_{1(y_2-y_3)} + x_2(y_3-y_1) + x_3(y_1-y_2) \right]$

Therefore the area of triangle ABC = the absolute value of $\frac{1}{2} \begin{vmatrix} x_1 & y_1 & 1 \\ x_2 & y_2 & 1 \\ x_3 & y_3 & 1 \end{vmatrix}$

Example: Find the area of the triangle whose vertices are (3,8),(-4,2) and (5,1).

Solution: The area of a triangle is given by the absolute value of $\frac{1}{2} \begin{vmatrix} 3 & 8 & 1 \\ -4 & 2 & 1 \\ 5 & 1 & 1 \end{vmatrix}$

$$= \frac{1}{2} [3 (2-1) - 8(-4-5) + 1 (-4-10)]$$
$$= \frac{1}{2} (3+72 - 14) = \frac{61}{2} \text{ sq. units}$$

Example: Using determinants, find the area of the triangle whose vertices are (-3,5), (7,2) and (3,-6).

Solution: The area of a triangle with vertices (-3,5),(3,-6) and (7,2) is given by the absolute

value of
$$\frac{1}{2} \begin{vmatrix} -3 & 5 & 1 \\ 7 & 2 & 1 \\ 3 & -6 & 1 \end{vmatrix}$$

$$\Delta = \frac{1}{2} [(-3) (2+6) - 5 (7-3) + 1(-42-6)]$$
$$= \frac{1}{2} (-24-20-48)$$
$$= \frac{1}{2} (-92) = -46$$

Area = |-46| = 46 sq. units

• Condition of collinear of three points:

Let the three points be A(x₁, y₁), B(x₂, y₂) and C(x₃, y₃). The given points A, B and C will be collinear if and only if area of $\triangle ABC = 0$.

Which implies area of triangle formed by three collinear points A,B,C is zero if and only if

$$\Delta = \frac{1}{2} \begin{vmatrix} x_1 & y_1 & 1 \\ x_2 & y_2 & 1 \\ x_3 & y_3 & 1 \end{vmatrix} = 0$$

Example: Prove that the points P (a, b+c), Q (b, c+a) and R (c, a+b) are collinear.

Solution . The given points P, Q and R are collinear if

$$\Delta = \begin{vmatrix} a & b+c & 1 \\ b & c+a & 1 \\ c & a+b & 1 \end{vmatrix} = 0$$

$$\Rightarrow \Delta = \begin{vmatrix} a & a+b+c & 1 \\ b & b+c+a & 1 \\ c & c+a+b & 1 \end{vmatrix}$$
 (operating C₂ \rightarrow C₂+C₁)

$$\Rightarrow \Delta = (a+b+c) \begin{vmatrix} a & 1 & 1 \\ b & 1 & 1 \\ c & 1 & 1 \end{vmatrix}$$
 (Taking common (a+b+c) from C₂)

$$\Rightarrow \Delta = (a+b+c) \ge 0$$
 (because C₂, C₃ are identical)

 $\Rightarrow \Delta = 0$

So, the points P (a, b+c), Q (b, c+a) and R (c, a+b) are collinear.

Example: If the points (2,-3), (a, -1) and (0,4) are collinear, find the value of a.

Solution:	If	given	points	are	collinear,	the			
$\begin{vmatrix} 2 & -3 & 1 \\ a & -1 & 1 \\ 0 & 4 & 1 \end{vmatrix} = 0$									
Applying $R_2 \rightarrow R$	2- R1								
$\begin{vmatrix} 2 & -3 & 1 \\ a - 2 & 2 & 0 \\ -2 & 7 & 0 \end{vmatrix} =$	=0	expanding the determinant along C ₃ .							
$\begin{vmatrix} a-2 & 2\\ -2 & 7 \end{vmatrix} = 0$									

7a -14+4=0

(C).Equation of a line passing through two given points

Let the two points be $A(x_1, y_1)$ and $B(x_2, y_2)$. Let P(x, y) be any point on the line joining A and B.

Then, points P, A and B are collinear. Therefore,

 $\begin{vmatrix} x & y & 1 \\ x_1 & y_1 & 1 \\ x_2 & y_2 & 1 \end{vmatrix} = 0$

This gives the equation of the line joining points $A(x_1, y_1)$ and $B(x_2, y_2 i.e., y_2)$

 $\begin{vmatrix} x & y & 1 \\ x_1 & y_1 & 1 \\ x_2 & y_2 & 1 \end{vmatrix} = 0$

Example : Find the equation of the line joining the points A (3,1) and B(9,3) using determinants.

Solution : Let P(x,y) be any point on the line joining the points A and B , then the points A,B, and P are collinear

 $\Rightarrow \begin{vmatrix} 3 & 1 & 1 \\ 9 & 3 & 1 \\ x & y & 1 \end{vmatrix} = 0 \qquad (\text{ operating } R_2 \rightarrow R_2 - R_1 \text{ and } R_3 \rightarrow R_3 - R_1)$ $\Rightarrow \begin{vmatrix} 3 & 1 & 1 \\ 6 & 2 & 0 \\ x - 3 & y - 1 & 0 \end{vmatrix} = 0$ $\Rightarrow 1 [6 (y-1) - 2 (x-3)] = 0 \qquad \text{expanding the determinant along } C_3.$ $\Rightarrow 6y - 2x = 0$

 \Rightarrow x-3y =0, which is the required equation of the line AB.

Example: Consider the points A (3,6), B(6,9) and C(9,12). Justify whether the points are collinear or not.

Solution : By condition of collinearity, the points will be collinear if

 $\begin{vmatrix} 3 & 6 & 1 \\ 6 & 9 & 1 \\ 9 & 12 & 1 \end{vmatrix} = 0$

Solving the determinant we get,

$$\Delta = 3^{2} \begin{vmatrix} 1 & 2 & 1 \\ 2 & 3 & 1 \\ 3 & 4 & 1 \end{vmatrix}$$
$$\Delta = 9[1(3-4) - 2(2-3) + 1(8-9)]$$
$$\Delta = 9(-1+2-1) = 9 \ge 0$$

 $\Delta = 0$

Thus, the points are collinear.

Example: If A (1,3) and B(0,0) and C(k,0) are three points such that area of a triangle ABC is 3 sq.units, then find the value of k.

Solution :

Since Area of triangle ABC=3, so
$$\frac{1}{2} \begin{vmatrix} 1 & 3 & 1 \\ 0 & 0 & 1 \\ k & 0 & 1 \end{vmatrix} = 3$$

$$\Rightarrow \frac{1}{2} [1(0-0)-3(0-k)+1(0-0)] = 3$$

⇒3k=6

Thus, the value of k=2.

Example: If the points A (1,3) and B(0,0) and C(k,0) are collinear, then find the value of k.

Solution :

Since A, B and C are collinear, so by condition of collinearity,

$$\begin{vmatrix} 1 & 3 & 1 \\ 0 & 0 & 1 \\ k & 0 & 1 \end{vmatrix} = 0$$

$$\Rightarrow [1(0-0)-3(0-k)+1(0-0)] = 0$$

$$\Rightarrow 3k = 0$$

Thus, the value of k=0.

Example : If $A(x_1, y_1)$, $B(x_2, y_2)$, $C(x_3, y_3)$ are the vertices of an equilateral triangle with each side

equal to a units, then prove that $\begin{vmatrix} x_1 & y_1 & 2 \\ x_2 & y_2 & 2 \\ x_3 & y_3 & 2 \end{vmatrix}^2 = 3 a^4.$

Solution : We know that the area of an equilateral triangle with side 'a' units = $\begin{pmatrix} \sqrt{3} \\ 4 \\ a^2 \end{bmatrix}$ sq. units.

Therefore, the absolute value of $\frac{1}{2}\begin{vmatrix} x_1 & y_1 & 1 \\ x_2 & y_2 & 1 \\ x_3 & y_3 & 1 \end{vmatrix} = \frac{\sqrt{3}}{4} a^2$ sq. units.

which implies the absolute value of 2 $\begin{vmatrix} x_1 & y_1 & 1 \\ x_2 & y_2 & 1 \\ x_3 & y_3 & 1 \end{vmatrix} = \sqrt{3} a^2$ sq. units.

$$\Rightarrow \begin{vmatrix} x_1 & y_1 & 2 \\ x_2 & y_2 & 2 \\ x_3 & y_3 & 2 \end{vmatrix}^2 = 3 a^4, \text{ as required.}$$

Summary:

- The minor M_{ij} of an element *a_{ij}* in matrix A is the determinant obtained by leaving ith row and jth column of A.
- The cofactor of an element a_{ij} in matrix A is given by $C_{ij} = (-1)^{i+j} M_{ij}$.
- The value of determinant A is obtained by the sum of products of elements of a row (or a column) with corresponding cofactors. For example, $|A| = a_{11}C_{11} + a_{12}C_{12} + a_{13}C_{13}$.
- If elements of a row (or column) are multiplied with the cofactors of any other row (or column), then their sum is zero. For example, a₁₁C₂₁ + a₁₂C₂₂ + a₁₃C₂₃ = 0.
- Area of a triangle with vertices (x_1, y_1) , (x_2, y_2) , (x_3, y_3) is given by the expression $Area = = \frac{1}{2} \begin{vmatrix} x_1 & y_1 & 1 \\ x_2 & y_2 & 1 \\ x_3 & y_3 & 1 \end{vmatrix}$
- Three points be A(x₁, y₁), B(x₂, y₂) and C(x₃, y₃) will be collinear if and only if $\frac{1}{2} \begin{vmatrix} x_1 & y_1 & 1 \\ x_2 & y_2 & 1 \\ x_3 & y_3 & 1 \end{vmatrix} = 0$
- The equation of the line joining points $A(x_1, y_1)$ and $B(x_2, y_2)$ is given by the expression
 - $\begin{vmatrix} x & y & 1 \\ x_1 & y_1 & 1 \\ x_2 & y_2 & 1 \end{vmatrix} = 0$