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1. MINORS  

Definition: Let A = |𝑎𝑖𝑗| be a determinant of order n. The minor Mij  of 𝑎𝑖𝑗 in  A   is the 

determinant of order (n-1) obtained by leaving ith row and jth column of A. 

Let’s understand the Minor with an example. 

Example : If A=|
1 2
4 5

| 

then 

minor M11 of𝑎11 =  5 , minor M12 of𝑎12=  4,  

minor M21 of𝑎21 = 2 , minor M22 of𝑎22= 1 

Example: If A =|
1 −2 3
1 2 1
2 2 −3

| 

then  let’s find out minors of their elements. 

Minor M11  of 𝑎11=   Determinant 2 x 2  obtained by leaving first row and first column of A. 



 

Minor M11 of 𝑎11= |
2 1
2 −3

|= -6-2 =-8 

Similarly, we obtain other minors  

Minor M12 of 𝑎12= |
1 1
2 −3

|= -3-2 =-5 

Minor M13 of 𝑎13= |
1 2
2 2

|= 2-4 =-2 

Minor M21 of 𝑎21= |
−2 3
2 −3

|=6-6 =0 

Exercise: 

Similarly find Minor M22, Minor M23, Minor M31, Minor M32, Minor M33. 

 

2. COFACTORS 

Definition :Let A = |𝑎𝑖𝑗| be a determinant of order n. The cofactor Cij  of 𝑎𝑖𝑗in A   is  ( -1)i+j  

times  the determinant of order (n-1) obtained by leaving ith row and jth column of A. 

Therefore, 

The cofactor  Cij  of 𝑎𝑖𝑗in A   =  ( -1)i+j Mij, where  Mij   is Minor of 𝑎𝑖𝑗in A. 

Thus, we have, Cij= Mij,  if i+j  is even and 

Cij= -Mij, if i+j is odd. 

Let’s explore the cofactor through an example 

 

Example: If A=|
1 2
4 5

|,  then 

Cofactor C11 of 𝑎11 = (-1)1+1 M11 =M11= 5 , 



 

Cofactor C12 of 𝑎12= (-1)1+2 M12 = -M12= -4, 

CofactorC21 of 𝑎21=(-1)2+1 M21 =-M21= -2 , 

Cofactor C22 of 𝑎22= (-1)2+2 M22 = M22 =1. 

Note: Cofactor 𝐶𝑖𝑗 =  -Mij,  if i+j is odd and 

𝐶𝑖𝑗= Mij, if i+j is even. 

Example: If A=[
1 −2 3
1 2 1
2 2 −3

],  

then let’s find out  cofactors of some of its elements. 

Cofactors C11 of 𝑎11= ( -1)1+1M11 = M11  =|
2 1
2 −3

|= -8 

Cofactors C12 of𝑎12=   ( -1)1+2M12 = -M12= -|
1 1
2 −3

|= 5 

Cofactors C13of𝑎13= ( -1)1+3M13 = M13=|
1 2
2 2

|= -2 

Cofactors C21  of 𝑎21=  ( -1)2+1M21 = -M21= − |
−2 3
2 −3

|=0 

Similarly, one can find cofactors of other elements . 

 

Exercise: 

Find cofactors C22, C23, C31, C32 and C33 . 

 

 

 



 

Note: 

1) The value of determinant A is obtained by the sum of products of elements of a row (or a 

column) with corresponding cofactors. 

For example, |𝐴| = 𝑎11𝐶11 +𝑎12𝐶12+𝑎13𝐶13. 

(Recall that we have expanded the determinant in Module 1 using the same technique) 

2) If elements of a row ( or column) are multiplied with the cofactors of any other row (or 

column), then their sum is zero 

For example,  𝑎11𝐶21 +𝑎12𝐶22+𝑎13𝐶23= 0 

 

3. APPLICATIONS OF DETERMINANTS TO COORDINATE GEOMETRY: 

• Area of a Triangle  

We  know from the knowledge of co-ordinate geometry that the area of a triangle with  vertices 

(x1, y1), (x2,y2), (x3,y3) is given by the expression 

= 
1

2
 [x1( y2- y3) + x2(y3 –y1)+x3(y1 -y2)] . 

This expression can also be written in the form of determinant as  det = 
1

2
|

𝑥1 𝑦1 1
𝑥2 𝑦2 1
𝑥3 𝑦3 1

| 

= 
1

2
 [x1( y2- y3) + x2(y3 –y1)+x3(y1 -y2)]  

Therefore ,the area of triangle ABC = the absolute value of   
1

2
|

𝑥1 𝑦1 1
𝑥2 𝑦2 1
𝑥3 𝑦3 1

| 

 

 



 

Example: Find the area of the triangle whose vertices are (3,8),(-4,2) and (5,1). 

Solution: The area of a triangle is given by the absolute value of 
1

2
|

3 8 1
−4 2 1
5 1 1

| 

=   
1

2
 [ 3 (2-1) -8(-4-5)+ 1 (-4-10)] 

= 
1

2
 ( 3+ 72 -14)= 

61

2
 sq. units 

Example: Using determinants, find the area of the triangle whose vertices are (-3,5), (7,2) and 

(3,-6). 

Solution: The area of a triangle with vertices (-3,5),(3,-6) and (7,2) is given by  the absolute 

value of
1

2
|
−3 5 1
7 2 1
3 −6 1

| 

∆ = 
1

2
 [ (-3) (2+6)- 5 (7-3)+1(-42-6)] 

=
1

2
 ( -24-20-48) 

= 
1

2
 (-92) = -46  

Area = |−46| = 46 sq. units 

• Condition of collinear of three points:  

Let the three points be A(x1, y1) , B(x2, y2) and C(x3, y3). The given points A, B and C will be 

collinear if and only if area of ∆𝐴𝐵𝐶 = 0. 

Which implies area of triangle formed by three collinear points A,B,C  is zero if and only if 

∆= 
1

2
|

𝑥1 𝑦1 1
𝑥2 𝑦2 1
𝑥3 𝑦3 1

|=0 

 



 

Example: Prove that the points P (a, b+c), Q (b, c+a) and R (c, a+b) are collinear. 

Solution . The given points P, Q and R are collinear if  

∆=|
𝑎 𝑏 + 𝑐 1
𝑏 𝑐 + 𝑎 1
𝑐 𝑎 + 𝑏 1

| =0 

⇒∆=|
𝑎 𝑎 + 𝑏 + 𝑐 1
𝑏 𝑏 + 𝑐 + 𝑎 1
𝑐 𝑐 + 𝑎 + 𝑏 1

|                                  ( operating C2  →C2+C1)  

⇒∆= ( a+b+c) |
𝑎 1 1
𝑏 1 1
𝑐 1 1

|                           ( Taking common (a+b+c) from C2) 

⇒ ∆= ( a+b+c) x 0                                             ( because C2, C3   are identical )  

⇒ ∆= 0  

So, the points P (a, b+c), Q (b, c+a) and R (c, a+b) are collinear. 

Example: If the points (2,-3), (a, -1) and (0,4) are collinear, find the value of  a. 

Solution: If given points are collinear, the

 

|
2 −3 1
𝑎 −1 1
0 4 1

|=0 

Applying R2 → R2- R1  

|
2 −3 1

𝑎 − 2 2 0
−2 7 0

|=0                            expanding the determinant along C3. 

|
𝑎 − 2 2

−2 7
|=0 

7a -14+4=0 



 

a=
10

7
. 

(C).Equation of a line passing through two given points 

Let the two points be A(x1, y1) and B(x2, y2). Let P(x, y) be any point on the line joining A and 

B.  

Then, points P, A and B are collinear. Therefore, 

|

𝑥 𝑦 1
𝑥1 𝑦1 1
𝑥2 𝑦2 1

|=0 

This gives the equation of the line joining points A(x1, y1) and B(x2, y2 i.e., 

|

𝑥 𝑦 1
𝑥1 𝑦1 1
𝑥2 𝑦2 1

|=0 

 

Example : Find the equation of the line joining the points A (3,1)  and B( 9,3)  using 

determinants. 

Solution :  Let P (x,y) be any point on the line joining the points A and B , then the points A,B,  

and P are collinear  

⇒|
3 1 1
9 3 1
𝑥 𝑦 1

|= 0                                   ( operating R2  →R2-R1  and R3  →R3-R1) 

⇒|
3 1 1
6 2 0

𝑥 − 3 𝑦 − 1 0
|= 0 

⇒1 [ 6 (y-1) – 2 (x-3) ] =0                  expanding the determinant along C3. 

⇒6y – 2x =0  



 

⇒x-3y =0 ,which is the required equation of the line AB. 

Example: Consider the points A (3,6), B(6,9) and  C(9,12) . Justify whether the points are 

collinear or not. 

Solution : By condition of collinearity, the points will be collinear if 

|
3 6 1
6 9 1
9 12 1

|=0 

Solving the determinant we get, 

∆ = 32|
1 2 1
2 3 1
3 4 1

| 

∆ = 9[1(3-4) -2(2-3)+1(8-9)] 

∆= 9(-1+2-1) = 9 x 0 

∆ = 0 

Thus, the points are collinear. 

Example: If A (1,3) and B(0,0) and  C(k,0) are three points such that area of a triangle ABC is 3 

sq.units, then find the value of k. 

Solution :  

Since  Area of triangle ABC=3, so 
1

2
|
1 3 1
0 0 1
𝑘 0 1

|= 3 

⇒
1

2
[ 1(0-0)-3(0-k)+1(0-0)]=3 

⇒3k=6  

Thus, the value of k=2. 



 

Example: If the points A (1,3) and B(0,0) and  C(k,0) are collinear, then find the value of k. 

Solution :  

Since  A , B and C are collinear, so by condition of collinearity, 

|
1 3 1
0 0 1
𝑘 0 1

|=0 

⇒[ 1(0-0)-3(0-k)+1(0-0)]=0 

⇒3k=0  

Thus, the value of k=0. 

 

Example : If A(x1 ,y1) , B(x2 ,y2), C(x3 ,y3)  are the vertices of an equilateral triangle with each side 

equal to  a units, then prove  that |

𝑥1 𝑦1 2
𝑥2 𝑦2 2
𝑥3 𝑦3 2

|

2

= 3 a4. 

Solution : We  know that the area of an equilateral triangle with side ‘a’ units = 
√3
4  a2  sq. units. 

Therefore , the absolute value of   
1

2
|

𝑥1 𝑦1 1
𝑥2 𝑦2 1
𝑥3 𝑦3 1

|= 
√3

4
 a2 sq. units. 

which implies the absolute value of 2 |

𝑥1 𝑦1 1
𝑥2 𝑦2 1
𝑥3 𝑦3 1

|= √3 a2 sq. units. 

⇒ |

𝑥1 𝑦1 2
𝑥2 𝑦2 2
𝑥3 𝑦3 2

|

2

= 3 a4, as required. 

 



 

Summary: 

• The minor Mij  of an element  𝑎𝑖𝑗  in matrix  A   is the determinant obtained by leaving ith 

row and jth column of A. 

• The cofactor of an element  𝑎𝑖𝑗  in matrix   A   is  given by Cij =  ( -1)i+j  Mij . 

• The value of determinant A is obtained by the sum of products of elements of a row (or a 

column) with corresponding cofactors. For example, |𝐴| = 𝑎11𝐶11 +𝑎12𝐶12 +𝑎13𝐶13. 

• If elements of a row (or column) are multiplied with the cofactors of any other row (or 

column), then their sum is zero. For example,  𝑎11𝐶21 +𝑎12𝐶22 +𝑎13𝐶23= 0. 

• Area of a triangle with  vertices (x1, y1), (x2,y2), (x3,y3) is given by the expression 

      Area = = 
1

2
|

𝑥1 𝑦1 1
𝑥2 𝑦2 1
𝑥3 𝑦3 1

| 

• Three points be A(x1, y1) , B(x2, y2) and C(x3, y3) will be collinear if and only if 

1

2
|

𝑥1 𝑦1 1
𝑥2 𝑦2 1
𝑥3 𝑦3 1

|=0 

• The equation of the line joining points A(x1, y1) and B(x2, y2 ) is given by the expression 

|

𝑥 𝑦 1
𝑥1 𝑦1 1
𝑥2 𝑦2 1

|=0 

 


