1. Details of Module and its structure

Module Detail

Subject Name	Mathematics
Course Name	Mathematics 03 (Class XII, Semester - 1)
Module Name/Title	Inverse Trigonometric Functions - Introduction ; Properties of
	Trigonometric Functions- Part 3

Module Id

 lemh_10203Pre-requisites

Objectives

Keywords
Basic knowledge about Inverse of Tangent Function and Inverse of Cotangent Function
After going through this lesson, the learners will be able to understand the following:

- Principal value branches of six inverse trigonometric functions
- Inverse of Tangent Function
- Inverse of Cotangent Function Inverse of Tangent Function, Inverse of Cotangent Function, Domains and Ranges of Inverse Trigonometric Functions

2. Development Team

Role	Name	Affiliation
National MOOC Coordinator (NMC)	Prof. Amarendra P. Behera	CIET, NCERT, New Delhi
Program Coordinator	Dr. Indu Kumar	CIET, NCERT, New Delhi
Course Coordinator (CC) / PI	Dr. Til Prasad Sarma	DESM, NCERT, New Delhi
Course Co-Coordinator/ Co-PI	Anjali Khurana	CIET, NCERT, New Delhi
Subject Matter Expert (SME)	Dr. Monika Sharma	Shiv Nadar University, Noida
Revised By	Manpreet Kaur Bhatia	IINTM College, GGSIP Review Team
	Prof. V.P. Singh (Retd.) Prof. Ram Avtar (Retd.) Prof. Mahendra Shankar (Retd.)	DESM, NCERT, New Delhi DESM, NCERT, New Delhi DESM, NCERT, New Delhi

TABLE OF CONTENTS :

1. Inverse of Tangent Function

2. Inverse of Secant Function
3. Summary

1. INVERSE OF TANGENT FUNCTION

Consider the graph of $\mathrm{y}=\tan \mathrm{x}$ as shown below.

Fig. 2.3 (i)
Consider the function $f: R-\left\{(2 n+1) \frac{\pi}{2}: n \in Z\right\} \rightarrow R$ given by $f(x)=\tan x$. It is evident that $f(x)=\tan x$ is a many-one onto function and hence it is not invertible. However, the function $\tan :\left[\frac{-\pi}{2}, \frac{\pi}{2} \rightarrow R\right.$ associating each $\mathrm{x} \in\left[\frac{-\pi}{2}, \frac{\pi}{2}\right.$ to $\tan \mathrm{x} \in \mathrm{R}$ is bijection and so it is invertible.

Consider the function $\tan ^{-1}: \mathrm{R} \rightarrow \frac{-\pi}{2}, \frac{\pi C}{2}$ given by $\boldsymbol{y}=\tan ^{-1} \boldsymbol{x}$

Fig. 2.3 (ii)
Thus , $\tan ^{-1}$ can be defined as a function whose domain is R and range could be any of the intervals $\frac{\frac{-\pi}{2}}{\left(\frac{-3 \pi}{2}, \frac{-\pi}{2}\right)}, \frac{\pi}{2}\left(\frac{\pi}{2}, \frac{3 \pi}{2}\right)$ and so on. These intervals give different branches of the function $\tan ^{-1}$. The branch with range $\frac{-\pi}{2}, \frac{\pi}{2}$ is called the principal value branch of the function $\tan ^{-1}$ as shown in graph above. We thus have

$$
\tan ^{-1}: \mathrm{R} \rightarrow \frac{-\pi}{2}, \frac{\pi}{2}
$$

Consider the graph $\mathrm{y}=\tan \mathrm{x}$ and $\mathrm{y}=\tan ^{-1} \mathrm{x}$ given below. We observe both curves are mirror images of each other in the line $\mathrm{y}=\mathrm{x}$.

Fig. 2.3 (iii)

Example: Find the principal values of $\tan ^{-1}(-\sqrt{3}$
Solution: We know that for any $\mathrm{x} \in \mathrm{R}, \tan ^{-1} \mathrm{x}$ represent an angle in $\frac{-\pi}{2}, \frac{\pi}{2}$ whose tangent is x . Therefore,
a) $\quad \tan ^{-1}\left(-\sqrt{3}=\left(\right.\right.$ An angle $\theta \epsilon \frac{-\pi}{2}, \frac{\pi}{2}$ such that $\tan \theta=-\sqrt{3}=-\frac{\pi}{3}$
b) $\quad \tan ^{-1}(1)=\left(\right.$ An angle $\theta \epsilon \frac{-\pi}{2}, \frac{\pi}{2}$ such that $\left.\tan \theta=1\right)=\frac{\pi}{4}$

Example: Find the principal values of $\tan ^{-1}\left\{\sin \left(-\frac{\pi}{2}\right)\right\}$
Solution: We know that $\sin \left(-\frac{\pi}{2}\right)=-1$,

$$
\therefore \tan ^{-1}\left\{\sin \left(-\frac{\pi}{2}\right)\right\}=\tan ^{-1}(-1)=-\frac{\pi}{4}
$$

Example: For the principal value, evaluate $\tan ^{-1}\left\{2 \cos \left(2 \sin ^{-1} \frac{1}{2}\right)\right\}$
Solution: We know that $\sin ^{-1} \frac{1}{2}=\frac{\pi}{6}$
$\therefore \tan ^{-1}\left\{2 \cos \left(2 \sin ^{-1} \frac{1}{2}\right)\right\}=\tan ^{-1}\left\{2 \cos \left(2 x \frac{\pi}{6}\right)\right\}=\tan ^{-1}\left\{2 \cos \frac{\pi}{3}\right)=\tan ^{-1}\left(2 \times \frac{1}{2}\right)=\tan ^{-1} 1=\frac{\pi}{4}$

2. INVERSE OF COTANGENT FUNCTION

Consider the graph of $y=\operatorname{cotx}$ given below.

Fig. 2.3 (iv)

The function $f(x)=\cot x$ has domain $=R-\{n \pi: n \in Z\}$ and range R. Therefore, $f: R-\{n \pi: n \in$ $Z\} \rightarrow R$ is a many-one onto function .Now, If we consider $\quad \cot :(0, \pi \rightarrow R$, then it is bijection and hence invertible.

In fact, cotangent function restricted to any of the intervals $(-\pi, 0),(0, \pi),(\pi, 2 \pi$ etc., is bijective and its range is R. These intervals give different branches of the function $\cot ^{-1} \mathrm{x}$.

Consider the graph of $\cot ^{-1}: \mathrm{R} \rightarrow(0, \pi)$ given below.

Fig. 2.3 (v)

The function with range $(0, \pi)$ is called the principal value branch of the function $\cot ^{-1}$ as give in the above graph. We thus have $\cot ^{-1}: \mathrm{R} \rightarrow(0, \pi)$ as principal value branch.

Example: Find the set of values of $\cot ^{-1}(1)$ and $\cot ^{-1}(-1)$.
Solution: For any $x \in R, \cot ^{-1} x$ is an angle $\theta \epsilon(0, \pi)$ such that $\cot \theta=x$ $\therefore \cot ^{-1}(1)=($ An angle $\theta \in(0, \pi)$ such that $\cot \theta=1)=\frac{\pi}{4}$
and $\quad \cot ^{-1}(-1)=($ An angle $\theta \in(0, \pi)$ whose cotangent is equal to -1$)=\frac{3 \pi}{4}$
Hence, required set is $\left\{\frac{\pi}{4}, \frac{3 \pi}{4}\right\}$.

Example: Find the principal values of $\cot ^{-1} \sqrt{3}$ and $\cot ^{-1}(-1)$.
Solution: We know that for any $\mathrm{x} \in \mathrm{R}, \cot ^{-1} \mathrm{x}$ denotes an angle in $(0, \pi)$ whose cotangent is x .
$\therefore \cot ^{-1} \sqrt{3}=($ An angle in $(0, \pi)$ whose cotangent is $\sqrt{3}) \frac{\pi}{6}$
Similarly, $\cot ^{-1}(-1)=($ An angle $(0, \pi)$ whose cotangent is $(-1))=\frac{3 \pi}{4}$.
What we have learnt In summary, The domains and ranges (principal value branches) of above six inverse trigonometric functions are given below:

Functions
$\mathrm{y}=\sin ^{-1} \mathrm{x}$
$[-1,1]$
$[-1,1]$
$y=\operatorname{cosec}^{-1} x$
$y=\sec ^{-1} x$
R-(-1,1)
R-(-1,1)
R
R

Range (Principal value branches)

$$
\begin{aligned}
& {\left[\frac{-\pi}{2} \frac{\pi}{2}\right]} \\
& {[0, \pi]} \\
& {\left[\frac{-\pi}{2} \frac{\pi}{2}\right]-\{0\}} \\
& {[0, \pi]-\left\{\frac{\pi}{2}\right\}} \\
& \left(\frac{-\pi}{2} \frac{\pi}{2}\right) \\
& (0, \pi)
\end{aligned}
$$

OR

S.NO.	Inverse Cir. Fn.	Domain	Range	Graph
1.	$\begin{aligned} & \sin ^{-1} x=\theta \text { iff } \\ & \sin \theta=x,-\pi / 2 \leq \theta \leq \pi / 2 \end{aligned}$	$[-1,1]$	$[-\pi / 2, \pi / 2]$	
2.	$\begin{aligned} & \cos ^{-1} x=\theta \text { iff } \\ & \cos \theta=x, 0 \leq \theta \leq \pi \end{aligned}$	$[-1,1]$	$[0, \pi]$	
3.	$\begin{aligned} & \tan ^{-1} x=\theta \\ & \text { iff } \tan \theta=x, \frac{\pi}{2}<\theta<\frac{\pi}{2} \end{aligned}$	$(-\infty, \infty)$	$(-\pi / 2, \pi / 2)$	
4.	$\begin{aligned} & \cot ^{-1} x=\theta \\ & \text { iff } \cot \theta=x, 0 \leq \theta \leq \pi \end{aligned}$	$(-\infty, \infty)$	$(0, \pi)$	
5.	$\begin{aligned} & \sec ^{-1} x=\theta \\ & \text { iff } \sec \theta=x, 0 \leq \theta \leq \pi \\ & \text { and } \theta=\frac{\pi}{2} \end{aligned}$	$\begin{gathered} (-\infty,-1] \\ {[1, \infty)} \end{gathered}$	$\begin{aligned} & {[0, \pi]} \\ & \theta=\frac{\pi}{2} \end{aligned}$	
6.	$\begin{aligned} & \operatorname{cosec}^{-1} \mathrm{x}=\theta \\ & \text { iff } \operatorname{cosec} \theta=\mathrm{x} \\ & -\frac{\pi}{2} \leq \theta \leq \frac{\pi}{2}, \theta \neq 0 \end{aligned}$	$\begin{gathered} (-\infty,-1] \\ {[1, \infty)} \end{gathered}$	$\begin{aligned} & {[-\pi / 2, \pi / 2]} \\ & \theta \neq 0 \end{aligned}$	

3. Summary

- The domain and ranges of different trigonometric functions are given below:

Function	Domain value	
$\mathbf{Y}=\operatorname{Tan}^{-1} \mathbf{x}$	R	Range(Principal branches)
$\mathbf{Y}=\operatorname{Cot}^{-1} \mathbf{x}$	R	$\left(\frac{-\pi}{2} \frac{\pi}{2}\right)$

