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1. INVERSE OF TANGENT FUNCTION 

Consider the graph of y= tan x as shown below. 

 

Fig.2.3  (i) 

Consider the function f:R-{(2n+1)
𝜋

2
:n ϵ Z}→R given by f(x)=tan x. It is evident that f(x)=tan x is 

a many-one onto function and hence it is not invertible. However, the function tan: [
−𝜋

2
, 
𝜋

2
 →R 

associating each x ϵ [
−𝜋

2
, 
𝜋

2
 to tan x ϵ R is bijection and so it is invertible. 

 

 

 

 

 

 

 

 

 

 



 

Consider the function tan-1:  R → 
−𝜋

2
, 
𝜋𝐶

2
given by y = tan-1x 

 

y= tan-1x 

Fig.2.3 (ii) 

Thus ,tan-1 can be defined as a function whose domain is R and range could be any of the 

intervals

−𝜋

2

(
−3𝜋

2
,
−𝜋

2
)
, 
𝜋

2
(
𝜋

2
,
3𝜋

2
)and so on. These intervals give different branches of the function 

tan-1.The branch with range 
−𝜋

2
, 
𝜋

2
 is called the principal value branch of the function tan-1  as 

shown in graph above. We thus have 

 tan-1:R → 
−𝜋

2
, 
𝜋

2
 

Consider the graph y= tan x and y= tan-1x  given below. We observe both curves are mirror 

images of each other in the line y=x. 

 



 

 

Fig.2.3 (iii) 

 

 

 

Example: Find the principal values of tan-1(-√3 

Solution: We know that for any x ϵ R, tan-1 x represent an angle in 
−𝜋

2
, 
𝜋

2
 whose tangent is x.  

Therefore,  

a) tan-1(-√3= (An angle θ ϵ
−𝜋

2
, 
𝜋

2
 such that tan θ=-√3=-

𝜋

3
 

b) tan-1(1)= (An angle θ ϵ
−𝜋

2
, 
𝜋

2
 such that tan θ=1)=

𝜋

4
 

 

Example: Find the principal values of tan-1{sin(-
𝜋

2
)} 

Solution: We know that sin (-
𝜋

2
)=-1, 

  ⸫ tan-1{sin(-
𝜋

2
)}= tan-1(-1)=-

𝜋

4
 

 

 



 

Example: For the principal value, evaluate tan-1{2cos(2sin-11

2
)} 

Solution: We know that sin-11

2
=

𝜋

6
 

⸫ tan-1{2cos(2sin-11

2
)}= tan-1{2cos(2x

𝜋

6
)}= tan-1{2cos

𝜋

3
) = tan-1(2x

1

2
) = tan-11=

𝜋

4
 

 

2. INVERSE OF COTANGENT FUNCTION 

 

Consider the graph of y=cotx given below. 

  

 

Fig. 2.3 (iv) 

 

The function f(x) = cot x has domain = R-{n𝜋:n ϵ Z} and range R.  Therefore,f:R-{n𝜋 : n ϵ 

Z}→R is a many-one onto function .Now, If we consider         cot:(0,𝜋 →R, then it is bijection 

and hence invertible. 

In fact, cotangent function restricted to any of the intervals (−𝜋, 0),(0, π), (𝜋, 2𝜋 etc., is bijective 

and its range is R. These intervals give different branches of the function cot- 1x.  

Consider the graph of cot-1: R → (0, π) given below. 



 

 

Fig. 2.3 (v) 

 

The function with range (0, π) is called the principal value branch of the function cot-1  as give in 

the above graph. We thus have cot-1: R → (0, π) as principal value branch. 

 

Example: Find the set of values of cot-1(1) and cot-1(-1). 

Solution: For any x ϵ R, cot-1x is an angle θ ϵ(0, π) such that cot θ=x 

  ⸫ cot-1(1)=(An angle θ ϵ (0, π) such that cot θ=1)=
𝜋

4
 

 and cot-1(-1)= (An angle θ ϵ (0, π) whose cotangent is equal to -1)=
3𝜋

4
 

 Hence, required set is {
𝜋

4
,
3𝜋

4
}. 

 

Example: Find the principal values of cot-1√3 and cot-1(-1). 

Solution: We know that for any x ϵ R, cot-1x denotes an angle in (0, π) whose cotangent is 

x. 

 ⸫ cot-1√3=(An angle in (0, π) whose cotangent is√3)
𝜋

6
 

 Similarly, cot-1(-1)= (An angle (0, π) whose cotangent is (-1))=
3𝜋

4
. 

What we have learnt In summary, The domains and ranges (principal value branches) of above 

six inverse trigonometric functions are given below: 

  

 



 

Functions  Domain  Range (Principal value branches) 

 y=sin-1x   [-1,1]    [
−𝜋

2

𝜋

2
] 

 y=cos-1x  [-1,1]        [0,π] 

 y=cosec-1x  R-(-1,1)   [
−𝜋

2

𝜋

2
] -{0} 

 y=sec-1x  R-(-1,1)   [0,π]-{
𝜋

2
} 

 y=tan-1x  R    (
−𝜋

2

𝜋

2
 ) 

 y=cot-1x  R    (0,π) 

OR 

 

 

3. Summary 

• The domain and ranges of different trigonometric functions are given below: 

Function  Domain  Range(Principal value 

branches) 

Y = Tan-1 x R (
−𝜋

2

𝜋

2
 ) 

Y = Cot-1 x R (0,π) 



 

 


