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1. INVERSE OF COSINE FUNCTION 

Consider the graph of cosine function given below. 

 

 

Fig.2.2 (i) 

Like sine function, the cosine function is a function whose domain is the set of all real numbers 

and range is the set [-1,1]. If we restrict the domain of cosine function to [0, π], then it becomes 

one-one and onto with range [-1,1].   

Actually, cosine function restricted to any of the intervals [-π, 0], [0, π], [π, 2π] etc., is bijective 

with range as [-1,1].  

We plot the graph of  inverse of cosine function. 

Consider the graph of   cos-1 : [-1,1] → [0,π] given below. 

 

Fig 2.2 (ii) 



 

From the above graph, it is clear that the branch with range [0, π] is called the principal value 

branch of the function cos-1 and the value of cos-1 x lying in  

[0, π] for a given value of x ϵ [-1,1] is called the principal value. We write 

cos-1 : [-1,1] → [0,π] 

The curves y=cos x and y= cos-1x  are mirror images of each other in the line mirror  y=x as 

shown in figure below.  

 

 

                                                                       Fig.2.2 (iii) 

Example: Find the principal value of  (a) cos-1(
√3

2
)  and (b) cos-1(- 

1

2
 ). 

Solution: For any x ϵ [-1,1] , cos-1x represents an angle in [0, π] whose cosine is x.  

Therefore, 

a) cos-1( 
√3

2
) = ( An angle θ ϵ [0, π] such that cos θ =

√3

2
 ) =

𝜋

6
 

 

b) cos-1(- 
1

2
 ) =( An angle θ ϵ [0, π] such that cos θ =

−1

2
 ) =

2𝜋

3
 

 

Example:  Find the principal value of  cos-1{sin[cos-11

2
]}. 

Solution: We know that cos-11

2
)  = 

𝜋

3
 . 

𝑐𝑜𝑠−1𝑥 

            Cos x 

-----     f(x) = x 

 



 

 = cos-1{sin[cos-11

2
]} 

    = cos-1(sin 
𝜋

3
)                     [⸪ sin 

𝜋

3
  = (

√3

2
)] 

= cos-1( 
√3

2
 ) 

                          = 
𝜋

6
                       [⸪ cos-1 ( 

√3

2
 )=  

𝜋

6
 ] 

 

Example: Find the domain of cos-1(2x-1). 

Solution: The domain of cos-1x is [-1,1], so the domain of cos-1(2x-1) is the set of all values 

of x satisfying -1 ≤ 2x -1 ≤ 1 

⇒    0 ≤ 2x ≤ 2  

⇒    0 ≤ x ≤ 1 

Hence, the domain of cos-1 (2x-1) is [0,1]. 

 

2. INVERSE OF SECANT FUNCTION 

Consider the graph of  y = sec x as given below. 

 

Fig.2.2 (iv) 

Since, sec x  = 
1

𝑐𝑜𝑠𝑥
 , the domain of the y = sec x function is the set R- {x:x =

(2𝑛+1)𝜋

2
, n ϵ Z} and 

the range is the set {y : y ϵ R, y ≥ 1 or y ≤ - 1} i.e., the set R-(-1,1).  It means that y=sec x 

assumes all real values except -1<y<1 and is not defined for odd multiple of 
𝜋

2
.  If we restrict the 



 

domain of secant function to [0, 𝜋]-{
𝜋

2
}, then it is one to one and onto with its range as the set R-

(-1,1).  Actually, secant function restricted to any of the intervals [−𝜋, 0]-{
−𝜋

2
},[0, 𝜋] −

{
𝜋

2
} , [𝜋, 2𝜋] − {

3𝜋

2
} etc., is bijective and its range is the set of all real numbers R-(-1,1).  

Consider the function   y= sec-1 : R-(-1,1) →[ 0, 𝜋]– {
𝜋

2
} as shown in graph below. 

 

S 

Fig. 2.2(v) 

 

Thus sec-1 can be defined as a function whose domain is R-(-1,1) and range could be any of the 

intervals [−𝜋, 0]-{ 
−𝜋

2
},[0, 𝜋] − {

𝜋

2
}, [𝜋, 2𝜋] − {

3𝜋

2
} etc.  The function corresponding to the range 

[0, 𝜋]– {
𝜋

2
} is called the principal value branch of sec-1.  We thus have principal branch as 

sec-1 : R-(-1,1) →[ 0, 𝜋]– {𝜋 2⁄ } . 

 

Example:  Find the principal values of sec-1(2). 

Solution : For any x ϵ (-∞,-1]U[1,∞), i. e., R-(-1,1), sec-1x is an angle θ ϵ [0,
𝜋

2
)U(

𝜋

2
,π] whose 

secant is x i. e. sec θ = x. 

Therefore, sec-1(2) = (An angle θ ϵ [0,
𝜋

2
)U(

𝜋

2
,π] such that sec θ=2) = 

𝜋

3
 

 

 



 

Example:  Find the domain of sec-1(2x+1). 

 

Solution : The domain of sec-1x is (-∞,-1]U[1,∞).Therefore, sec-1(2x+1) is meaningful, if 

2x+1≥1 or 2x+1≤-1. 

⇒2x≥0 or  2x≤-2 

⇒x≥0 or  x≤-1 

⇒x ϵ (-∞, -1]U[0,∞) 

Hence, the domain of sec-1(2x+1) is (-∞, -1] U [0,∞) 

 

3. Summary 

• The domain and ranges of different trigonometric functions are given below: 

Function  Domain  Range(Principal value 

branches) 

Y = Cos-1 x [-1,1] [ 0, 𝜋] 

Y = Sec-1 x R-(-1,1)  [ 0, 𝜋]– {
𝜋

2
} 

 

 


