1. Details of Module and its structure

Module Detail	
Subject Name	Mathematics
Course Name	Mathematics 03 (Class XII, Semester - 1)
Module Name/Title	Bijective Functions - Part 2
Module Id	lemh_10102
Pre-requisites	Relations, Functions, Domain, Co-domain, Range
Objectives	After going through this lesson, the learners will be able to understand the following: - Understand injective functions. - Understand surjective functions. - Understand bijective functions.
Keywords	Functions, range, Co-domain, Injective, Surjective, Bijective

2. Development Team

Role	Name	Affiliation
National MOOC Coordinator (NMC)	Prof. Amarendra P. Behera	CIET, NCERT, New Delhi
Program Coordinator	Dr. Mohd. Mamur Ali	CIET, NCERT, New Delhi
Course Coordinator (CC) / PI	Dr. Til Prasad Sarma	DESM, NCERT, New Delhi
Course Co-Coordinator / Co-PI	Dr. Mohd. Mamur Ali	CIET, NCERT, New Delhi
Subject Matter Expert (SME)	Ms. Neenu Gupta	Ahlcon International School Mayur Vihar, Ph - I, Delhi
Review Team	Prof. Ram Avtar (Retd.)	DESM, NCERT, New Delhi

Table of Contents :

1. Introduction

2. Functions

3. Injective Functions
4. Surjective Functions
5. Bijective Functions
6. Summary

1. Introduction

In class XI, you have already studied about functions as special type of relations, its domain, codomain and range. You have already studied about some standard functions and their curvesketching. In this module, we will study about the types of functions. Before going further, let us recall what is a function?

2. Functions

Let A and B be two non-empty sets. A relation R from A to B is said to be a function if for each a $\in A$, there exists a unique $y \in B$ such that $y=f(x)$.

Thus a function is a relation from a non-empty set A to another non-empty set B if each element $a \in$ A appears in some ordered pair under ' f ' and no ' a ' is repeated.

Total number of functions from A to $\mathrm{B}=\mathrm{m}^{\mathrm{n}}$, where $\mathrm{n}(\mathrm{A})=\mathrm{m}$ and $\mathrm{n}(\mathrm{B})=\mathrm{n}$

A function $f: A \rightarrow B$ is called a real valued function if B is a subset of R, set of real numbers, and if both A and B are subsets of R then f is a real function.

Usually we consider real functions under our study in this module.
We denote function ' f ' as $f: A \rightarrow B$, where $\mathrm{A}, \mathrm{B} \subset \mathrm{R}$ and $\mathrm{y}=\mathrm{f}(\mathrm{x})$ for all $\mathrm{x} \in \mathrm{A}$ and y $\in B$

Here, y is called dependent variable and x is called independent variable.

So, set of all values of ' x ' is called domain and set of all values of ' y ' is called range of R. Also,
' y ' is called image of ' x ' and ' x ' is called pre-image of ' y '.
i.e., Domain of $R=\{x\} \subseteq A$

Range of $R=\{y\} \subseteq B$
Co-domain of $\mathrm{R}=\mathrm{B}$
Clearly, Range \subseteq Co-Domain

3. Injective Functions

A function $f: A \rightarrow B$ is said to be injective or one-one function if images of distinct elements of A under f are distinct, i.e., each element of A has unique image in B, i.e, no two 'a' have same image.

$$
f: A \rightarrow B \text { is one-one } \Leftrightarrow f(a)=f(b) \Rightarrow a=b \text { for all } a, b \in A
$$

If f is not one-one function then it is called many-one function.

Let us understand this by using an arrow diagram.

Source: http://www.mathwarehouse.com/algebra/relation/one-to-one-function.php
One-to-One (1-1)

Source:http://www.math.toronto.edu/preparing-for-
calculus/4 functions/we 3 one to one.html

Now, we will strengthen this concept with the help of some examples.

Example 1: Show that the function $f: R \rightarrow R \quad$ is injective where $\mathrm{f}(\mathrm{x})=4 \mathrm{x}-1 \quad \forall x \in R$
[NCERT Exemplar]
Solution: Let $\mathrm{f}\left(\mathrm{x}_{1}\right)=\mathrm{f}\left(\mathrm{x}_{2}\right)$

$$
\begin{aligned}
& \Rightarrow \quad 4 \mathrm{x}_{1}-1=4 \mathrm{x}_{2}-1 \\
& \Rightarrow \quad 4 \mathrm{x}_{1}=4 \mathrm{x}_{2} \\
& \Rightarrow \quad \mathrm{x}_{1}=\mathrm{x}_{2}
\end{aligned}
$$

Thus $f(x)$ is injective.

Example 2: Check if the function $f: R \rightarrow R \quad$ given by $\mathrm{f}(\mathrm{x})=\sin \mathrm{x}$ is injective.
Solution: Since $f(x)=\sin x$ is periodic function

$$
\text { i.e., } \quad \sin \frac{\pi}{3}=\sin \frac{2 \pi}{3}=\frac{\sqrt{3}}{2}
$$

i.e., two values of x have same image under ' f '

Thus $f(x)=\sin x$ is not injective.

4. Surjective Functions

A function $f: A \rightarrow B$ is said to be onto or surjective if each element $y \in B$ is image of some element of A under f.
$f: A \rightarrow B$ is said to be onto or surjective \Leftrightarrow for each $\mathrm{y} \in B$, there exists $\mathrm{x} \in \mathrm{A}$ such that $\mathrm{y}=\mathrm{f}(\mathrm{x})$

A function $f(x)$ is onto if range $=$ co-domain
If a function is not onto, it is called into function.

Let us understand this by using an arrow diagram.

Source: https://sites.google.com/site/aplustoppernotes/home/onto-function-1

Now, we will strengthen this concept with the help of some examples.

Example 3: Show that the function $f: R \rightarrow R$ is sujective where $\mathrm{f}(\mathrm{x})=4 \mathrm{x}-1 \quad \forall x \in R$
Solution: Since Range of $f(x)=R=C o-d o m a i n$
Therefore, $f(x)$ is surjective.

Example 4: Check if the function $f: R \rightarrow R \quad$ given by $\mathrm{f}(\mathrm{x})=\sin \mathrm{x}$ is surjective.
Solution: Since range of $f(x)=[-1,1] \quad \neq$ co-domain of $f(x)$
Thus $f(x)$ is not surjective.

5. Bijective Functions

A function $f: A \rightarrow B$ is said to be bijective if f is one-one and onto function.

Let us understand this by using an arrow diagram.

Bijective (injective and surjective)

Source: https://notyourmomsfom.wordpress.com/2013/03/04/proving-if-f-is-invertible-then-it-is-bijective/

Source: http://ndp.jct.ac.il/tutorials/discrete/node41.html

Now, we will strengthen this concept with the help of some examples.

Example 5: Let $\mathrm{A}=[-1,1]$ then check the function defined on set A is one-one, onto or bijective, where $\mathrm{f}(\mathrm{x})=|x|$
Solution: Since $\quad|1|=|-1|=1$
i.e., two values of x have same image under ' f '

Thus $\mathrm{f}(\mathrm{x})=|x| \quad$ is not injective.
Since Range of $f(x)=[0,1] \neq$ co-domain of $f(x)$
Thus $f(x)$ is not surjective.

Example 6: Let $\mathrm{A}=\mathrm{R}-\{3\}, \mathrm{B}=\mathrm{R}-\{1\}$. Let $f: A \rightarrow B \quad$ defined as $\quad f(x)=\frac{x-2}{x-3}, \forall x \in A$. Then show that f is bijective.
[NCERT]
Solution: Let $\quad f\left(x_{1}\right)=f\left(x_{2}\right)$

$$
\begin{aligned}
& \Rightarrow \frac{x_{1}-2}{x_{1}-3}=\frac{x_{2}-2}{x_{2}-3} \\
& \Rightarrow\left(x_{1}-2\right)\left(x_{2}-3\right)=\left(x_{2}-2\right)\left(x_{1}-3\right) \\
& \Rightarrow x_{1} x_{2}-3 x_{1}-2 x_{2}+6=x_{1} x_{2}-2 x_{1}-3 x_{2}+6 \\
& \Rightarrow-3 x_{1}-2 x_{2}=-2 x_{1}-3 x_{2} \\
& \Rightarrow x_{1}=x_{2}
\end{aligned}
$$

Thus $f(x)$ is one-one.
Let $\mathrm{y}=\mathrm{f}(\mathrm{x})$

$$
\begin{aligned}
& \Rightarrow y=\frac{x-2}{x-3} \\
& \Rightarrow y(x-3)=x-2 \\
& \Rightarrow x y-3 y=x-2 \\
& \Rightarrow x y-x=3 y-2 \\
& \Rightarrow x(y-1)=3 y-2 \\
& \Rightarrow x=\frac{3 y-2}{y-1}
\end{aligned}
$$

Here, $y \neq 1$, so $y \in B$
Also, let $x=3 \quad \Rightarrow 3=\frac{3 y-2}{y-1}$

$$
\begin{aligned}
& \Rightarrow 3(y-1)=3 y-2 \\
& \Rightarrow 3 y-3=3 y-2 \\
& \Rightarrow 3=2, \text { which is absurd }
\end{aligned}
$$

Thus $x=\frac{3 y-2}{y-1} \in A=R-\{3\}$
Hence $f(x)$ is surjective.
Hence $f(x)$ is bijective.

Example 7: Let $f: R \rightarrow R$ defined as $f(x)=1+x^{2}$. Check if $f(x)$ is one-one, onto or bijective.
[NCERT]
Solution: Let $\quad f\left(x_{1}\right)=f\left(x_{2}\right)$

$$
\begin{aligned}
& \Rightarrow 1+x_{1}^{2}=1+x_{2}^{2} \\
& \Rightarrow x_{1}^{2}=x_{2}^{2} \\
& \Rightarrow x_{1}= \pm x_{2} \text { as } x_{1}, x_{2} \in R
\end{aligned}
$$

Thus $f(x)$ is not one-one.
Also, Range of $\mathrm{f}(\mathrm{x})=[1, \quad \infty \neq \mathrm{R}$
Thus $f(x)$ is not onto.
Hence $f(x)$ is not bijective.

Example 8: Let A and B be two sets. Show that $f: A \times B \rightarrow B \times A$ such that $f(a, b)=(b, a)$ is bijective function.
[NCERT]
Solution: Let $\quad f\left(a_{1}, b_{1}\right)=f\left(a_{2}, b_{2}\right)$

$$
\begin{aligned}
& \Rightarrow\left(b_{1}, a_{1}\right)=\left(b_{2}, a_{2}\right) \\
& \Rightarrow b_{1}=b_{2}, a_{1}=a_{2}
\end{aligned}
$$

Thus f is injective.
Let (b, a) $\in \mathrm{B} \times \mathrm{A}$ then $\mathrm{b} \in \mathrm{B}$ and $\mathrm{a} \in \mathrm{A} \Rightarrow(\mathrm{a}, \mathrm{b}) \in \mathrm{A} \times \mathrm{B}$
Thus, for all (b, a) \in B x A, there exists $(a, b) \in A \times B$ such that $f(a, b)=(b, a)$
Thus $f(a, b)$ is surjective.
Hence f is bijective map.

Example 9: Let $f: N \rightarrow N$ defined as $f(n)=\left\{\begin{array}{l}\frac{n+1}{2} \text {, if nis odd } \\ \frac{n}{2} \text {, if } n \text { is even }\end{array} ; \forall n \in N\right.$. State whether the function is bijective. Justify your answer.
[NCERT]
Solution: Here, $\mathrm{f}(1)=\frac{1+1}{2}=1$ and $\mathrm{f}(2)=\frac{2}{2}=1$
Thus two distinct values of n have same image under f, therefore, f is not one-one and hence not bijective.

Example 10: Show that the function $f: R \rightarrow R \quad$ defined as $f(x)=\frac{x}{1+x^{2}}, \forall x \in R$ is neither one-one nor onto.
[NCERT Exemplar]
Solution: Let $\quad f\left(x_{1}\right)=f\left(x_{2}\right)$

$$
\left.\begin{array}{c}
\Rightarrow \frac{x_{1}}{1+x_{1}^{2}}=\frac{x_{2}}{1+x_{2}^{2}} \\
\Rightarrow x_{1}\left(1+x_{2}^{2}\right)=x_{2}\left(1+x_{1}^{2}\right) \\
\Rightarrow x_{1}+x_{1} x_{2}^{2}=x_{2}+x_{2} x_{1}^{2} \\
\Rightarrow x_{1}-x_{2}+x_{1} x_{2}^{2}-x_{2} x_{1}^{2}=0 \\
x
\end{array}\right] \begin{gathered}
\left(\mid 1-x_{2}\right)-x_{1} x_{2}\left(x_{1}-x_{2}\right)=0 \\
\Rightarrow
\end{gathered} \begin{gathered}
x \\
\left(\mid 1-x_{2}\right)\left(1-x_{1} x_{2}\right)=0 \\
\Rightarrow \\
\left(\mid 1-x_{2}\right)=0 \mathrm{v}\left(1-x_{1} x_{2}\right)=0 \\
\Rightarrow
\end{gathered} \begin{gathered}
\Rightarrow x_{1}=x_{2} \vee 1=x_{1} x_{2}
\end{gathered}
$$

Thus $\mathrm{f}(\mathrm{x})$ is not injective as $1=x_{1} x_{2}$ does not imply $\mathrm{x}_{1}=\mathrm{x}_{2}$
Also, range of $f(x) \neq$ co-domain of $f(x)$
Because $1 \in R \quad$ should also be image of some $\mathrm{x} \in R$ then

$$
\frac{x}{1+x^{2}}=1 \Rightarrow x^{2}-x+1=0 \text {; which has no real roots. }
$$

6. Summary

- Let A and B be two non-empty sets. A relation R from A to B is said to be a function if for each a $\in A$, there exists a unique $y \in B$ such that $y=f(x)$.
- Total number of functions from A to $B=m^{n}$, where $n(A)=m$ and $n(B)=n$
- Total number of functions from A to $B=m^{n}$, where $n(A)=m$ and $n(B)=n$
- A function $f: A \rightarrow B$ is called a real valued function if B is a subset of R, set of real numbers, and if both A and B are subsets of R then f is a real function.
- A function $f: A \rightarrow B$ is said to be injective or one-one function if each element of A has unique image in B, i.e, no two 'a' have same image.
- $f: A \rightarrow B$ is one-one $\Leftrightarrow f(a)=f(b) \Rightarrow a=b$ for all $a, b \in A$
- If f is not one-one function then it is called many-one function.
- A function $f: A \rightarrow B$ is said to be onto or surjective if each element y $\in B$ is image of some element of A under f .
- $\quad f: A \rightarrow B$ is said to be onto or surjective \Leftrightarrow for each $y \in B$, there exists x \in A such that $\mathrm{y}=\mathrm{f}(\mathrm{x})$
- A function $f(x)$ is onto if range $=$ co-domain
- If a function is not onto, it is called into function.
- A function $f: A \rightarrow B$ is said to be bijective if f is one-one and onto function.

