1. Details of Module and its structure

Module Detail		
Subject Name	Mathematics	
Course Name	Mathematics 02 (Class XI, Semester - 2)	
Module Name/Title	Introduction to Three Dimensional Geometry-Part 2	
Module Id	kemh_21202	
Pre-requisites	Basic knowledge of Three Dimensional Geometry	
Objectives	 After going through this lesson, the learners will be able to do the following: Section Formula (Internal Division) Section Formula (External Division) Mid-Point Formula Centroid of a Triangle 	
Keywords	Internal Division, External Division, Mid Point Formula, Centroid of a Triangle	

2. Development Team

Role	Name	Affiliation
National MOOC Coordinator (NMC)	Prof. Amarendra P. Behera	CIET, NCERT, New Delhi
Program Coordinator	Dr. Rejaul Karim Barbhuiya	CIET, NCERT, New Delhi
Course Coordinator (CC) / PI	Prof. Til Prasad Sarma	DESM, NCERT, New Delhi
Course Co-Coordinator /Co- PI	Ms. Anjali Khurana	CIET, NCERT, New Delhi
Subject Matter Expert (SME)	Dr. Sadhna Shrivastava (Retd.)	KVS, Faridabad, Haryana
Review Team	Prof. Bhim Prakash Sarrah	Assam University, Tezpur

Table Of Contents:

- 1. Introduction
- 2. Section Formula (Internal division)
- 3. Section Formula (External division)
- 4. Mid-point formula
- 5. Centroid of a triangle
- 6. Examples
- 7. Summary

1. Introduction:

In previous module, you have learnt to locate a point in three dimensional space using a triplet (x, y, z), the coordinates of a point P in the space. You have noticed that, we have an additional coordinate 'z', in triplet (x, y, z), compared to pair (x, y) used as coordinates of a point, due to extension from two dimensional plane to three dimensional space.

You have also learnt distance formula in three dimensional geometry.

To find distance between two points $P(x_1, y_1, z_1)$ and $Q(x_2, y_2, z_2)$, we use the formula,

$$PQ = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2 + (z_2 - z_1)^2}$$

Here, also we have an additional term, $(z_2 - z_1)^2$.

Let us now extend **Section formula** learnt in two dimensional geometry in earlier classes to three dimensional space.

The section formula gives us the coordinates of a point which divides a given line segment in a given ratio.

2. Section Formula (Internal division):

Let us consider two points $P(x_1, y_1, z_1)$ and $Q(x_2, y_2, z_2)$, and the point R(x, y, z) which divides the line segment PQ in the ratio m : n internally. Internal division means point R lies in between points P and Q, on line segment PQ.

Draw PL, QM and RN perpendicular to the XY-plane. Obviously PL || RN || QM and feet of these perpendiculars will lie in a XY-plane.

Also the points L, M and N will lie on a line which is the intersection of the plane containing PL, RN and QM with the XY-plane. Through the point R a line ST is drawn parallel to the line LM. The line ST is intersecting the line segment LP externally at point S and internally the line segment

MQ at T, as is shown in figure above. Since, PL \parallel RN \parallel QM, therefore, quadrilaterals LNRS and NMTR are parallelograms and the triangles PSR and QTR are similar.

Hence,

$$\frac{m}{n} = \frac{PR}{QR} = \frac{SP}{QT}$$
$$= \frac{SL - PL}{QM - TM}$$
$$= \frac{NR - PL}{QM - NR}$$

Therefore, we get,

$$\frac{m}{n} = \frac{z - z_1}{z_2 - z}$$

Cross-multiplying we get,

$$z = \frac{mz_2 + nz_1}{m+n}$$

Similarly, by drawing perpendiculars to the XZ and YZ-planes, we get

$$y = \frac{my_2 + ny_1}{m+n}$$
 and $x = \frac{mx_2 + nx_1}{m+n}$

Hence, the coordinates of the point R which divides the line segment joining points P (x_1 , y_1 , z_1) and Q (x_2 , y_2 , z_2) internally in the ratio m : n are,

$$\left(\frac{mx_2 + nx_1}{m+n}, \frac{my_2 + ny_1}{m+n}, \frac{mz_2 + nz_1}{m+n}\right)$$

Remark:

The coordinates of the point R which divides the line segment PQ in the ratio k : 1 can be obtained by taking $k = \frac{m}{n}$. Hence, the required coordinates of point R are,

$$\left(\frac{kx_2+x_1}{k+1}, \frac{ky_2+y_1}{k+1}, \frac{kz_2+z_1}{k+1}\right)$$

3. Section Formula (External division):

Let us consider two points $P(x_1, y_1, z_1)$ and $Q(x_2, y_2, z_2)$, and the point R(x, y, z) dividing the line segment PQ in the ratio m : n externally, then the point R will be on PQ produced, such that PR : RQ = m : n, see the figure below the line segments PR and RQ have opposite directions, hence, coordinates of point R can be obtained by replacing n by -n,

So, coordinates of point R are;

$$\left(\frac{mx_2 - nx_1}{m - n}, \frac{my_2 - ny_1}{m - n}, \frac{mz_2 - nz_1}{m - n}\right)$$

Example:

Find coordinates of the point which divides the line segment joining

the points (-2, 3, 5) and (1, -4, 6) in the ratio,

(i) 2 : 3 internally (ii) 2 : 3 externally.

Solution:

(i) Let P (x, y, z) be the point which divides the line segment joining points A (-2, 3, 5) and B (1, -4, 6) internally in the ratio 2 : 3.

Then, using section formula,

 $x = \frac{2(1)+3(-2)}{2+3} = \frac{2-6}{5} = \frac{-4}{5}$ $y = \frac{2(-4)+3(3)}{2+3} = \frac{-8+9}{5} = \frac{1}{5}$ $z = \frac{2(6)+3(5)}{2+3} = \frac{12+15}{5} = \frac{27}{5}$

Thus, the coordinates of the required point P are;

$$\left(\frac{-4}{5},\frac{1}{5},\frac{27}{5}\right).$$

(ii) In the figure below, the point P (x, y, z) divides the line segment joining points A (-2, 3, 5) and B (1, -4, 6) externally in the ratio 2 : 3,

according to the rule for external division explained above, the coordinates of point P are;

$$x = \frac{2(1)-3(-2)}{2-3} = \frac{2+6}{-1} = -8$$
$$y = \frac{2(-4)-3(3)}{2-3} = \frac{-8-9}{-1} = 17$$
$$z = \frac{2(6)-3(5)}{2-3} = \frac{12-15}{-1} = 3$$

Hence, the coordinates of the required point P dividing the line segment AB externally in the ratio 2:3 are; (-8, 17, 3).

Example:

A point R with *x*-coordinate equal to 4 lies on the line segment joining the points P (2, -3, 4) and Q (8, 0, 10). Find *y*-coordinate and *z*-coordinate of the point R.

Solution:

Let us suppose point R divides the line segment PQ in the ratio k : 1. Then x, y and z coordinates of the point R are given by

$$x = \frac{8k+2}{k+1}$$
, $y = \frac{-3}{k+1}$, $z = \frac{10k+4}{k+1}$

Since *x*-coordinate of the point R is 4, therefore,

$$4 = \frac{8k+2}{k+1}$$

Solving, we get, $k = \frac{1}{2}$, substituting the value of k above we get,

$$y = -2$$
 and $z = 6$,

Hence, y-coordinate of the point R is -2 and z-coordinate of the point R is 6.

4. Mid-point formula:

Let us take two points $P(x_1, y_1, z_1)$ and $Q(x_2, y_2, z_2)$ and M(x, y, z) be the mid-point of the line segment PQ, then PM = MQ, hence, the point M divides the line segment PQ in the ratio 1:1 internally, Putting, m = n = 1, in the formula for internal division, the coordinates of mid-point of PQ are given by,

$$x = \frac{x_1 + x_2}{2}, \quad y = \frac{y_1 + y_2}{2} \quad \text{and} \quad z = \frac{z_1 + z_2}{2}$$

Hence, coordinates of point M are,

$$\left(\begin{array}{c} \frac{x_1 + x_2}{2} , \frac{y_1 + y_2}{2} , \frac{z_1 + z_2}{2} \end{array} \right)$$

Example:

The mid-points of the sides of a triangle are (1, 5, -1), (0, 4, -2) and (2, 3, 4). Find the vertices of the triangle.

Solution:

Let the vertices of the triangle be P (x_1 , y_1 , z_1), Q (x_2 , y_2 , z_2) and R (x_3 , y_3 , z_3) and let M₁ (1, 5, -1), M₂ (0, 4, -2) and M₃ (2, 3, 4) be the mid-points of the sides QR, RP and PQ.

Since M₁ is the mid-point of side QR, therefore,

$$\frac{x_2 + x_3}{2} = 1, \qquad \frac{y_2 + y_3}{2} = 5, \qquad \frac{z_2 + z_3}{2} = -1$$

$$x_2 + x_3 = 2, \qquad y_2 + y_3 = 10, \qquad z_2 + z_3 = -2....(i)$$

M₂ is the mid-point of side PR, therefore,

$$\frac{x_1 + x_3}{2} = 0, \qquad \frac{y_1 + y_3}{2} = 4, \qquad \frac{z_1 + z_3}{2} = -2$$
$$x_1 + x_3 = 0, \qquad y_1 + y_3 = 8, \qquad z_1 + z_3 = -4....(ii)$$

M₃ is the mid-point of side PQ, therefore,

$$\frac{x_1 + x_2}{2} = 2, \qquad \frac{y_1 + y_2}{2} = 3, \qquad \frac{z_1 + z_2}{2} = 4$$
$$x_1 + x_2 = 4, \qquad y_1 + y_2 = 6, \qquad z_1 + z_2 = 8....(iii)$$

Adding the three equations,

 $2(x_1 + x_2 + x_3) = 6$, $2(y_1 + y_2 + y_3) = 24$, $2(z_1 + z_2 + z_3) = 2$ Or, $(x_1 + x_2 + x_3) = 3$, $(y_1 + y_2 + y_3) = 12$, $(z_1 + z_2 + z_3) = 1$

.....(iv)

Using equation (iv) with equations (i), (ii) and (iii), we get,

 $x_1 = 1$, $x_2 = 3$, $x_3 = -1$ $y_1 = 2$, $y_2 = 4$, $y_3 = 6$ $z_1 = 3$, $z_2 = 5$, $z_3 = -7$

Hence, coordinates of the vertices of the triangle are,

(1, 2, 3), (3, 4, 5) and (-1, 6, -7)

Example:

Find coordinates of the points which trisect the line segment joining

the points P (2, 1, -3) and Q (5, -8, 3).

Solution:

Let R_1 and R_2 be the points which trisect the line segment PQ.

Then, $PR_1 = R_1R_2 = R_2Q$, hence, R_1 divides the line segment PQ in the ratio 1 : 2 and R_2 divides PQ in the ratio 2 : 1, Therefore, for point R_1 ,

$$x = \frac{1(5)+2(2)}{1+2} = \frac{5+4}{3} = 3$$
$$y = \frac{1(-8)+2(1)}{1+2} = \frac{-8+2}{3} = -2$$
$$z = \frac{1(3)+2(-3)}{1+2} = \frac{3-6}{3} = -1$$

Hence, coordinates of the point R_1 are (3, -2, -1).

And point R_2 divides PQ in the ratio 2 : 1, Therefore, for point R_2 , we have,

$$x = \frac{2(5)+1(2)}{2+1} = \frac{10+2}{3} = 4$$
$$y = \frac{2(-8)+1(1)}{2+1} = \frac{-16+1}{3} = -5$$
$$z = \frac{2(3)+1(-3)}{2+1} = \frac{6-3}{3} = 1$$

Therefore, coordinates of the point R_2 are (4, -5, 1).

Coordinates of the points which trisect the given line segment are;

(3, -2, -1) and (4, -5, 1).

5. Centroid of a triangle:

Let us now find out the coordinates of centroid of a triangle whose vertices are known. Let ABC be the triangle and the coordinates of the vertices A, B and C be (x_1, y_1, z_1) , (x_2, y_2, z_2) and (x_3, y_3, z_3) respectively. Let D be the mid-point of side BC of the triangle. Then the coordinates of point D will be,

$$\left(\frac{x_2 + x_3}{2}, \frac{y_2 + y_3}{2}, \frac{z_2 + z_3}{2}\right)$$

Let G be the centroid of the triangle.

then G will divide the median AD in the ratio 2 : 1. Hence, the coordinates of G will be;

$$\left(\begin{array}{c} \frac{2\left(\frac{x_2+x_3}{2}\right)+x_1}{2+1}, \frac{2\left(\frac{y_2+y_3}{2}\right)+y_1}{2+1}, \frac{2\left(\frac{z_2+z_3}{2}\right)+z_1}{2+1}\end{array}\right)$$

or
$$\left(\frac{x_1+x_2+x_3}{3}, \frac{y_1+y_2+y_3}{3}, \frac{z_1+z_2+z_3}{3}\right)$$

6. Example:

If the origin is the centroid of the triangle PQR with vertices P (2*a*, 2, 6), Q (-4, 3*b*, -10) and R (8, 14, 2*c*), then find the values of *a*, *b* and *c*.

Solution:

We know that coordinates of the centroid of a triangle whose vertices are (x_1, y_1, z_1) , (x_2, y_2, z_2) and (x_3, y_3, z_3) is,

$$\left(\frac{x_1 + x_2 + x_3}{3}, \frac{y_1 + y_2 + y_3}{3}, \frac{z_1 + z_2 + z_3}{3}\right)$$

The vertices of the given triangle are, P (2*a*, 2, 6), Q (-4, 3*b*, -10) and R (8, 14, 2*c*), let centroid of the triangle PQR be G (*x*, *y*, *z*) then,

,

$$x = \frac{2a - 4 + 8}{3} \quad y = \frac{2 + 3b + 14}{3} \quad z = \frac{6 - 10 + 2c}{3}$$

It is given that the origin is the centroid of the triangle PQR, therefore,

$$0 = \frac{2a - 4 + 8}{3}, \quad 0 = \frac{2 + 3b + 14}{3}, \quad 0 = \frac{6 - 10 + 2c}{3}$$

Solving we get, a = -2, $b = -\frac{16}{3}$ and c = 2

Example:

The centroid of a triangle PQR is at the point (1, 1, 1). If the coordinates of the vertices P and Q are (3, -5, 7) and (-1, 7, -6) respectively, find the coordinates of the vertex R.

Solution:

Let the coordinates of vertex R be (x, y, z) and the centroid of the triangle be G, the coordinates of centroid are given (1, 1, 1). then,

$$\frac{x+3-1}{3} = 1 \qquad \frac{y-5+7}{3} = 1, \qquad \frac{z+7-6}{3} = 1,$$

Solving we get, x = 1, y = 1 and z = 2,

Hence, coordinates of vertex R are (1, 1, 2).

Example:

Find the ratio in which the line segment joining the points P(2, 3, 4) and Q(-3, 5, -4) is divided by the YZ-plane. Also find the coordinates of the point of intersection.

Solution:

Let YZ-plane divide the line segment joining points P (2, 3, 4) and Q (-3, 5, -4) at point R (x, y, z) in the ratio k : 1. Then the coordinates of point R are

$$\left(\frac{-3k+2}{k+1}, \frac{5k+3}{k+1}, \frac{-4k+4}{k+1}\right)$$

Since point R lies on YZ-plane, the x-coordinate of point R should be zero, therefore,

$$\frac{-3k+2}{k+1} = 0$$
$$k = \frac{2}{3}$$

,

Hence, YZ-plane divides the join of points P (2, 3, 4) and Q (-3, 5, -4) in the ratio 2 : 3 internally.

Putting value of k, the coordinates of the required point are,

$$\left(\frac{-3\left(\frac{2}{3}\right)+2}{\left(\frac{2}{3}\right)+1}, \frac{5\left(\frac{2}{3}\right)+3}{\left(\frac{2}{3}\right)+1}, \frac{-4\left(\frac{2}{3}\right)+4}{\left(\frac{2}{3}\right)+1}\right)$$
$$= \left(0, \frac{19}{5}, \frac{4}{5}\right)$$

Thus the coordinates of the point R, the point of intersection of the line segment PQ and the YZplane is $\left(0, \frac{19}{5}, \frac{4}{5}\right)$

Example:

Use section formula to prove that the three points P (-2, 3, 5), Q (1, 2, 3) and R (7, 0, -1) are collinear.

Solution:

Suppose the given points are collinear and the point R divides PQ in the ratio k: 1, then coordinates of point R will be given by,

$$\left(\frac{k-2}{k+1},\frac{2k+3}{k+1},\frac{3k+5}{k+1}\right)$$

But, coordinates of point R are (7, 0, -1), thus

$$\frac{k-2}{k+1} = 7$$
, $\frac{2k+3}{k+1} = 0$ and $\frac{3k+5}{k+1} = -1$,

Solution of each of these three gives,

$$k = \frac{-3}{2}$$

Since each of these three equations gives same value of k, hence, the given points are collinear and the point R divides PQ externally in the ratio 3:2.

Example:

Find the lengths of the median of the triangle with vertices P(0, 0, 6), Q(0, 4, 0) and R(6, 0, 0). Solution:

Let M₁, M₂ and M₃ be the mid-points of the sides QR, RP and PQ, then

by mid-point formula coordinates of points M_1 , M_2 and M_3 are respectively,

M₁:
$$\left(\frac{0+6}{2}, \frac{4+0}{2}, \frac{0+0}{2}\right)$$
 or (3, 2, 0)

M₂:
$$\left(\frac{6+0}{2}, \frac{0+0}{2}, \frac{0+6}{2}\right)$$
 or $(3, 0, 3)$

M₃:
$$\left(\frac{0+0}{2}, \frac{0+4}{2}, \frac{6+0}{2}\right)$$
 or $(0, 2, 3)$

Using distance formula, length of the median PM₁ is;

$$PM_1 = \sqrt{(3-0)^2 + (2-0)^2 + (0-6)^2}$$
$$= \sqrt{9+4+36} = \sqrt{49} = 7$$

length of the median PM₂ is;

PM₂ =
$$\sqrt{(3-0)^2 + (0-4)^2 + (3-0)^2}$$

= $\sqrt{9+16+9} = \sqrt{34}$

and length of the median PM₃ is;

PM₃ =
$$\sqrt{(0-6)^2 + (2-0)^2 + (3-0)^2}$$

= $\sqrt{36+4+9} = \sqrt{49} = 7$

7. Summary:

- 1. The section formula gives us the coordinates of that point of a line segment which divides the given line segment in a given ratio.
- 2. The coordinates of the point R which divides the line segment joining points P (x_1 , y_1 , z_1) and Q (x_2 , y_2 , z_2) internally in the ratio m : n are,

$$\left(\frac{mx_{2} + nx_{1}}{m+n}, \frac{my_{2} + ny_{1}}{m+n}, \frac{mz_{2} + nz_{1}}{m+n}\right)$$

3. The coordinates of the point R which divides the line segment joining points P (x_1 , y_1 , z_1) and Q (x_2 , y_2 , z_2) externally in the ratio m : n are,

$$\left(\frac{mx_2 - nx_1}{m - n}, \frac{my_2 - ny_1}{m - n}, \frac{mz_2 - nz_1}{m - n}\right)$$

4. The coordinates of the mid-point of the line segment joining two points P (x_1 , y_1 , z_1) and Q (x_2 , y_2 , z_2) are

$$\left(\begin{array}{c} \frac{x_1 + x_2}{2} , \frac{y_1 + y_2}{2} , \frac{z_1 + z_2}{2} \end{array}\right)$$

5. The coordinates of the centroid of the triangle, whose vertices are $(x_1, y_1, z_1) (x_2, y_2, z_2)$ and (x_3, y_3, z_3) , are

$$\left(\frac{x_1 + x_2 + x_3}{3}, \frac{y_1 + y_2 + y_3}{3}, \frac{z_1 + z_2 + z_3}{3}\right)$$