1. Details of Module and its structure

\(\left.\begin{array}{l|l|}\hline Module Detail \&

\hline Subject Name \& Mathematics

\hline Course Name \& Mathematics 02 (Class XI, Semester - 2)\end{array}\right]\)	Introduction to Three Dimensional Geometry-Part 2

2. Development Team

Role	Name	Affiliation
National MOOC Coordinator (NMC)	Prof. Amarendra P. Behera	CIET, NCERT, New Delhi
Program Coordinator	Dr. Rejaul Karim Barbhuiya	CIET, NCERT, New Delhi
Course Coordinator (CC) / PI	Prof. Til Prasad Sarma	DESM, NCERT, New Delhi
Course Co-Coordinator /Co- PI	Ms. Anjali Khurana	CIET, NCERT, New Delhi
Subject Matter Expert (SME)	Dr. Sadhna Shrivastava (Retd.)	KVS, Faridabad, Haryana
Review Team	Prof. Bhim Prakash Sarrah	Assam University, Tezpur

Table Of Contents:

1. Introduction
2. Section Formula (Internal division)
3. Section Formula (External division)
4. Mid-point formula
5. Centroid of a triangle
6. Examples
7. Summary

1. Introduction:

In previous module, you have learnt to locate a point in three dimensional space using a triplet (x, y, z), the coordinates of a point P in the space. You have noticed that, we have an additional coordinate ' z ', in triplet (x, y, z), compared to pair (x, y) used as coordinates of a point, due to extension from two dimensional plane to three dimensional space.

You have also learnt distance formula in three dimensional geometry.
To find distance between two points $\mathrm{P}\left(x_{1}, \mathrm{y}_{1}, \mathrm{z}_{1}\right)$ and $\mathrm{Q}\left(x_{2}, \mathrm{y}_{2}, \mathrm{z}_{2}\right)$, we use the formula,

$$
\mathrm{PQ}=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}+\left(z_{2}-z_{1}\right)^{2}}
$$

Here, also we have an additional term, $\left(z_{2}-z_{1}\right)^{2}$.
Let us now extend Section formula learnt in two dimensional geometry in earlier classes to three dimensional space.

The section formula gives us the coordinates of a point which divides a given line segment in a given ratio.

2. Section Formula (Internal division):

Let us consider two points $\mathrm{P}\left(x_{1}, y_{1}, z_{1}\right)$ and $\mathrm{Q}\left(x_{2}, y_{2}, z_{2}\right)$, and the point $\mathrm{R}(x, y, z)$ which divides the line segment PQ in the ratio $m: n$ internally. Internal division means point R lies in between points P and Q , on line segment PQ .

Draw PL, QM and RN perpendicular to the XY-plane. Obviously PL || RN || QM and feet of these perpendiculars will lie in a XY-plane.

Also the points L, M and N will lie on a line which is the intersection of the plane containing PL, RN and QM with the XY-plane. Through the point R a line ST is drawn parallel to the line LM. The line ST is intersecting the line segment LP externally at point S and internally the line segment

MQ at T, as is shown in figure above. Since, PL \| RN \| QM, therefore, quadrilaterals LNRS and NMTR are parallelograms and the triangles PSR and QTR are similar.

Hence,

$$
\begin{aligned}
\frac{m}{n} & =\frac{\mathrm{PR}}{\mathrm{QR}}=\frac{\mathrm{SP}}{\mathrm{QT}} \\
& =\frac{\mathrm{SL}-\mathrm{PL}}{\mathrm{QM}-\mathrm{TM}} \\
& =\frac{\mathrm{NR}-\mathrm{PL}}{\mathrm{QM}-\mathrm{NR}}
\end{aligned}
$$

Therefore, we get,

$$
\frac{m}{n}=\frac{z-z_{1}}{z_{2}-z}
$$

Cross-multiplying we get,

$$
z=\frac{m z_{2}+n z_{1}}{m+n}
$$

Similarly, by drawing perpendiculars to the XZ and YZ-planes, we get

$$
y=\frac{m y_{2}+n y_{1}}{m+n} \quad \text { and } \quad x=\frac{m x_{2}+n x_{1}}{m+n}
$$

Hence, the coordinates of the point R which divides the line segment joining points P (x_{1}, $\left.y_{1}, z_{1}\right)$ and $\mathrm{Q}\left(x_{2}, y_{2}, z_{2}\right)$ internally in the ratio $m: n$ are,

$$
\left(\frac{m x_{2}+n x_{1}}{m+n}, \frac{m y_{2}+n y_{1}}{m+n}, \frac{m z_{2}+n z_{1}}{m+n}\right)
$$

Remark:

The coordinates of the point R which divides the line segment PQ in the ratio $\mathrm{k}: 1$ can be obtained by taking $k=\frac{m}{n}$, Hence, the required coordinates of point R are,

$$
\left(\frac{k x_{2}+x_{1}}{k+1}, \frac{k y_{2}+y_{1}}{k+.1}, \frac{k z_{2}+z_{1}}{k+1}\right)
$$

3. Section Formula (External division):

Let us consider two points $\mathrm{P}\left(x_{1}, y_{1}, z_{1}\right)$ and $\mathrm{Q}\left(x_{2}, y_{2}, z_{2}\right)$, and the point $\mathrm{R}(x, y, z)$ dividing the line segment PQ in the ratio $m: n$ externally, then the point R will be on PQ produced, such that PR: RQ = $m: n$, see the figure below the line segments $P R$ and $R Q$ have opposite directions, hence, coordinates of point R can be obtained by replacing n by $-n$,

So, coordinates of point R are;

$$
\left(\frac{m x_{2}-n x_{1}}{m-n}, \frac{m y_{2}-n y_{1}}{m-n}, \frac{m z_{2}-n z_{1}}{m-n}\right)
$$

Example:

Find coordinates of the point which divides the line segment joining
the points $(-2,3,5)$ and $(1,-4,6)$ in the ratio,
(i) $2: 3$ internally
(ii) $2: 3$ externally.

Solution:

(i) Let $\mathrm{P}(x, y, z)$ be the point which divides the line segment joining points $\quad \mathrm{A}(-2,3,5)$ and B $(1,-4,6)$ internally in the ratio $2: 3$.

Then, using section formula,

$$
\begin{aligned}
& x=\frac{2(1)+3(-2)}{2+3}=\frac{2-6}{5}=\frac{-4}{5} \\
& y=\frac{2(-4)+3(3)}{2+3}=\frac{-8+9}{5}=\frac{1}{5} \\
& z=\frac{2(6)+3(5)}{2+3}=\frac{12+15}{5}=\frac{27}{5}
\end{aligned}
$$

Thus, the coordinates of the required point P are;

$$
\left(\frac{-4}{5}, \frac{1}{5}, \frac{27}{5}\right) .
$$

(ii) In the figure below, the point $\mathrm{P}(x, y, z)$ divides the line segment joining points $\mathrm{A}(-2,3,5)$ and $B(1,-4,6)$ externally in the ratio $2: 3$,

according to the rule for external division explained above, the coordinates of point P are;

$$
\begin{aligned}
& x=\frac{2(1)-3(-2)}{2-3}=\frac{2+6}{-1}=-8 \\
& y=\frac{2(-4)-3(3)}{2-3}=\frac{-8-9}{-1}=17 \\
& z=\frac{2(6)-3(5)}{2-3}=\frac{12-15}{-1}=3
\end{aligned}
$$

Hence, the coordinates of the required point P dividing the line segment $A B$ externally in the ratio $2: 3$ are; $(-8,17,3)$.

Example:

A point R with x-coordinate equal to 4 lies on the line segment joining the points $\mathrm{P}(2,-3,4)$ and $\mathrm{Q}(8,0,10)$. Find y-coordinate and z-coordinate of the point R .

Solution:

Let us suppose point R divides the line segment PQ in the ratio $\mathrm{k}: 1$. Then x, y and z coordinates of the point R are given by

$$
x=\frac{8 k+2}{k+1}, \quad y=\frac{-3}{k+1}, \quad z=\frac{10 k+4}{k+1}
$$

Since x-coordinate of the point R is 4 , therefore,

$$
4=\frac{8 k+2}{k+1}
$$

Solving, we get, $k=\frac{1}{2}$, substituting the value of k above we get,

$$
y=-2 \text { and } z=6,
$$

Hence, y-coordinate of the point R is -2 and z-coordinate of the point R is 6 .

4. Mid-point formula:

Let us take two points $\mathrm{P}\left(x_{1}, y_{1}, z_{1}\right)$ and $\mathrm{Q}\left(x_{2}, y_{2}, z_{2}\right)$ and $\mathrm{M}(x, y, z)$ be the mid-point of the line segment PQ , then $\mathrm{PM}=\mathrm{MQ}$, hence, the point M divides the line segment PQ in the ratio $1: 1$ internally, Putting, $m=n=1$, in the formula for internal division, the coordinates of mid-point of $P Q$ are given by,

$$
x=\frac{x_{1}+x_{2}}{2}, \quad y=\frac{y_{1}+y_{2}}{2} \text { and } z=\frac{z_{1}+z_{2}}{2}
$$

Hence, coordinates of point M are,

$$
\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}, \frac{z_{1}+z_{2}}{2}\right)
$$

Example:

The mid-points of the sides of a triangle are $(1,5,-1),(0,4,-2)$ and $(2,3,4)$. Find the vertices of the triangle.

Solution:

Let the vertices of the triangle be $\mathrm{P}\left(x_{1}, y_{1}, z_{1}\right), \mathrm{Q}\left(x_{2}, y_{2}, z_{2}\right)$ and $\mathrm{R}\left(x_{3}, y_{3}, z_{3}\right)$ and let $\mathrm{M}_{1}(1,5,-$ $1), M_{2}(0,4,-2)$ and $M_{3}(2,3,4)$ be the mid-points of the sides $Q R, R P$ and $P Q$.

Since M_{1} is the mid-point of side $Q R$, therefore,

$$
\begin{align*}
& \frac{x_{2}+x_{3}}{2}=1, \quad \frac{y_{2}+y_{3}}{2}=5, \quad \frac{z_{2}+z_{3}}{2}=-1 \\
& x_{2}+x_{3}=2, \quad y_{2}+y_{3}=10, \quad z_{2}+z_{3}=-2 . \tag{i}
\end{align*}
$$

M_{2} is the mid-point of side PR, therefore,

$$
\begin{array}{ll}
\frac{x_{1}+x_{3}}{2}=0, & \frac{y_{1}+y_{3}}{2}=4, \quad \frac{z_{1}+z_{3}}{2}=-2 \\
x_{1}+x_{3}=0, & y_{1}+y_{3}=8, \quad z_{1}+z_{3}=-4 . \tag{ii}
\end{array}
$$

M_{3} is the mid-point of side PQ, therefore,

$$
\begin{array}{ll}
\frac{x_{1}+x_{2}}{2}=2, & \frac{y_{1}+y_{2}}{2}=3, \quad \frac{z_{1}+z_{2}}{2}=4 \\
x_{1}+x_{2}=4, & y_{1}+y_{2}=6, \quad z_{1}+z_{2}=8 . \tag{iii}
\end{array}
$$

Adding the three equations,

$$
2\left(x_{1}+x_{2}+x_{3}\right)=6, \quad 2\left(y_{1}+y_{2}+y_{3}\right)=24, \quad 2\left(z_{1}+z_{2}+z_{3}\right)=2
$$

Or, $\left(x_{1}+x_{2}+x_{3}\right)=3,\left(y_{1}+y_{2}+y_{3}\right)=12, \quad\left(z_{1}+z_{2}+z_{3}\right)=1$

Using equation (iv) with equations (i), (ii) and (iii), we get,

$$
\begin{array}{lll}
x_{1}=1, & x_{2}=3, & x_{3}=-1 \\
y_{1}=2, & y_{2}=4, & y_{3}=6 \\
z_{1}=3, & z_{2}=5, & z_{3}=-7
\end{array}
$$

Hence, coordinates of the vertices of the triangle are,

$$
(1,2,3),(3,4,5) \text { and }(-1,6,-7)
$$

Example:

Find coordinates of the points which trisect the line segment joining
the points $\mathrm{P}(2,1,-3)$ and $\mathrm{Q}(5,-8,3)$.

Solution:

Let R_{1} and R_{2} be the points which trisect the line segment PQ .

Then, $P R_{1}=R_{1} R_{2}=R_{2} \mathrm{Q}$, hence, R_{1} divides the line segment PQ in the ratio $1: 2$ and R_{2} divides $P Q$ in the ratio $2: 1$, Therefore, for point R_{1},

$$
\begin{aligned}
& x=\frac{1(5)+2(2)}{1+2}=\frac{5+4}{3}=3 \\
& y=\frac{1(-8)+2(1)}{1+2}=\frac{-8+2}{3}=-2 \\
& z=\frac{1(3)+2(-3)}{1+2}=\frac{3-6}{3}=-1
\end{aligned}
$$

Hence, coordinates of the point R_{1} are $(3,-2,-1)$.

And point R_{2} divides PQ in the ratio $2: 1$, Therefore, for point R_{2}, we have,

$$
\begin{aligned}
& x=\frac{2(5)+1(2)}{2+1}=\frac{10+2}{3}=4 \\
& y=\frac{2(-8)+1(1)}{2+1}=\frac{-16+1}{3}=-5 \\
& z=\frac{2(3)+1(-3)}{2+1}=\frac{6-3}{3}=1
\end{aligned}
$$

Therefore, coordinates of the point R_{2} are $(4,-5,1)$.
Coordinates of the points which trisect the given line segment are;

$$
(3,-2,-1) \text { and }(4,-5,1)
$$

5. Centroid of a triangle:

Let us now find out the coordinates of centroid of a triangle whose vertices are known. Let ABC be the triangle and the coordinates of the vertices A, B and C be $\left(x_{1}, y_{1}, z_{1}\right),\left(x_{2}, y_{2}, z_{2}\right)$ and $\left(x_{3}, y_{3}, z_{3}\right)$ respectively. Let D be the mid-point of side BC of the triangle. Then the coordinates of point D will be,

$$
\left(\frac{x_{2}+x_{3}}{2}, \frac{y_{2}+y_{3}}{2}, \frac{z_{2}+z_{3}}{2}\right)
$$

Let G be the centroid of the triangle.

then G will divide the median AD in the ratio $2: 1$. Hence, the coordinates of G will be;

$$
\begin{aligned}
& \left(\frac{2\left(\frac{x_{2}+x_{3}}{2}\right)+x_{1}}{2+1}, \frac{2\left(\frac{y_{2}+y_{3}}{2}\right)+y_{1}}{2+1}, \frac{2\left(\frac{z_{2}+z_{3}}{2}\right)+z_{1}}{2+1}\right) \\
& \text { or } \quad\left(\frac{x_{1}+x_{2}+x_{3}}{3}, \frac{y_{1}+y_{2}+y_{3}}{3}, \frac{z_{1}+z_{2}+z_{3}}{3}\right)
\end{aligned}
$$

6. Example:

If the origin is the centroid of the triangle PQR with vertices $\mathrm{P}(2 a, 2,6), \mathrm{Q}(-4,3 b,-10)$ and R $(8,14,2 c)$, then find the values of a, b and c.

Solution:

We know that coordinates of the centroid of a triangle whose vertices are $\left(x_{1}, y_{1}, z_{1}\right),\left(x_{2}, y_{2}, z_{2}\right)$ and $\left(x_{3}, y_{3}, z_{3}\right)$ is,

$$
\left(\frac{x_{1}+x_{2}+x_{3}}{3}, \frac{y_{1}+y_{2}+y_{3}}{3}, \frac{z_{1}+z_{2}+z_{3}}{3}\right)
$$

The vertices of the given triangle are, $\mathrm{P}(2 a, 2,6), \mathrm{Q}(-4,3 b,-10)$ and $\mathrm{R}(8,14,2 c)$, let centroid of the triangle PQR be $\mathrm{G}(x, y, z)$ then,

$$
x=\frac{2 a-4+8}{3} \quad y=\frac{2+3 b+14}{3} \quad z=\frac{6-10+2 c}{3}
$$

It is given that the origin is the centroid of the triangle PQR , therefore,

$$
0=\frac{2 a-4+8}{3}, \quad 0=\frac{2+3 b+14}{3}, \quad 0=\frac{6-10+2 c}{3}
$$

Solving we get, $a=-2, \quad b=-\frac{16}{3} \quad$ and $\quad c=2$

Example:

The centroid of a triangle PQR is at the point $(1,1,1)$. If the coordinates of the vertices P and Q are $(3,-5,7)$ and $(-1,7,-6)$ respectively, find the coordinates of the vertex R.

Solution:

Let the coordinates of vertex R be (x, y, z) and the centroid of the triangle be G , the coordinates of centroid are given $(1,1,1)$. then,

$$
\frac{x+3-1}{3}=1, \quad \frac{y-5+7}{3}=1, \quad \frac{z+7-6}{3}=1
$$

Solving we get, $x=1, y=1$ and $z=2$,
Hence, coordinates of vertex R are (1, 1, 2).

Example:

Find the ratio in which the line segment joining the points $\mathrm{P}(2,3,4)$ and $\mathrm{Q}(-3,5,-4)$ is divided by the YZ-plane. Also find the coordinates of the point of intersection.

Solution:
Let YZ-plane divide the line segment joining points $\mathrm{P}(2,3,4)$ and $\mathrm{Q}(-3,5,-4)$ at point R (x, y, z) in the ratio $k: 1$. Then the coordinates of point R are

$$
\left(\frac{-3 k+2}{k+1}, \frac{5 k+3}{k+1}, \frac{-4 k+4}{k+1}\right)
$$

Since point R lies on YZ-plane, the x-coordinate of point R should be zero, therefore,

$$
\begin{aligned}
& \frac{-3 k+2}{k+1}=0 \\
& k=\frac{2}{3}
\end{aligned}
$$

Hence, YZ-plane divides the join of points $P(2,3,4)$ and $\mathrm{Q}(-3,5,-4)$ in the ratio $2: 3$ internally.

Putting value of k, the coordinates of the required point are,

$$
\begin{aligned}
& \left(\frac{-3\left(\frac{2}{3}\right)+2}{\left(\frac{2}{3}\right)+1}, \frac{5\left(\frac{2}{3}\right)+3}{\left(\frac{2}{3}\right)+1}, \frac{-4\left(\frac{2}{3}\right)+4}{\left(\frac{2}{3}\right)+1}\right) \\
= & \left(0, \frac{19}{5}, \frac{4}{5}\right)
\end{aligned}
$$

Thus the coordinates of the point R , the point of intersection of the line segment PQ and the YZ plane is $\left(0, \frac{19}{5}, \frac{4}{5}\right)$

Example:

Use section formula to prove that the three points $\mathrm{P}(-2,3,5), \mathrm{Q}(1,2,3)$ and $\mathrm{R}(7,0,-1)$ are collinear.

Solution:

Suppose the given points are collinear and the point R divides PQ in the ratio $k: 1$, then coordinates of point R will be given by,

$$
\left(\frac{k-2}{k+1}, \frac{2 k+3}{k+1}, \frac{3 k+5}{k+1}\right)
$$

But, coordinates of point R are $(7,0,-1)$, thus

$$
\frac{k-2}{k+1}=7, \frac{2 k+3}{k+1}=0 \quad \text { and } \quad \frac{3 k+5}{k+1}=-1,
$$

Solution of each of these three gives,

$$
k=\frac{-3}{2}
$$

Since each of these three equations gives same value of k, hence, the given points are collinear and the point R divides PQ externally in the ratio $3: 2$.

Example:

Find the lengths of the median of the triangle with vertices $\mathrm{P}(0,0,6), \mathrm{Q}(0,4,0)$ and $\mathrm{R}(6,0,0)$.

Solution:

Let $\mathrm{M}_{1}, \mathrm{M}_{2}$ and M_{3} be the mid-points of the sides QR , RP and PQ , then

by mid-point formula coordinates of points $\mathrm{M}_{1}, \mathrm{M}_{2}$ and M_{3} are respectively,
$\mathrm{M}_{1}: \quad\left(\frac{0+6}{2}, \frac{4+0}{2}, \frac{0+0}{2}\right)$ or $(3,2,0)$
$\mathrm{M}_{2}: \quad\left(\frac{6+0}{2}, \frac{0+0}{2}, \frac{0+6}{2}\right)$ or $(3,0,3)$
$\mathrm{M}_{3}: \quad\left(\frac{0+0}{2}, \frac{0+4}{2}, \frac{6+0}{2}\right)$ or $(0,2,3)$
Using distance formula, length of the median PM_{1} is;

$$
\begin{aligned}
\mathrm{PM}_{1} & =\sqrt{(3-0)^{2}+(2-0)^{2}+(0-6)^{2}} \\
& =\sqrt{9+4+36}=\sqrt{49}=7
\end{aligned}
$$

length of the median PM_{2} is;

$$
\begin{aligned}
\mathrm{PM}_{2} & =\sqrt{(3-0)^{2}+(0-4)^{2}+(3-0)^{2}} \\
& =\sqrt{9+16+9}=\sqrt{34}
\end{aligned}
$$

and length of the median PM_{3} is;

$$
\begin{aligned}
\mathrm{PM}_{3} & =\sqrt{(0-6)^{2}+(2-0)^{2}+(3-0)^{2}} \\
& =\sqrt{36+4+9}=\sqrt{49}=7
\end{aligned}
$$

7. Summary:

1. The section formula gives us the coordinates of that point of a line segment which divides the given line segment in a given ratio.
2. The coordinates of the point R which divides the line segment joining points $\mathrm{P}\left(x_{1}, y_{1}, z_{1}\right)$ and $\mathrm{Q}\left(x_{2}, y_{2}, z_{2}\right)$ internally in the ratio $m: n$ are,

$$
\left(\frac{m x_{2}+n x_{1}}{m+n}, \frac{m y_{2}+n y_{1}}{m+n}, \frac{m z_{2}+n z_{1}}{m+n}\right)
$$

3. The coordinates of the point R which divides the line segment joining points $\mathrm{P}\left(x_{1}, y_{1}, z_{1}\right)$ and $\mathrm{Q}\left(x_{2}, y_{2}, z_{2}\right)$ externally in the ratio $m: n$ are,

$$
\left(\frac{m x_{2}-n x_{1}}{m-n}, \frac{m y_{2}-n y_{1}}{m-n}, \frac{m z_{2}-n z_{1}}{m-n}\right)
$$

4. The coordinates of the mid-point of the line segment joining two points $\mathrm{P}\left(x_{1}, y_{1}, z_{1}\right)$ and $\mathrm{Q}\left(x_{2}, y_{2}, z_{2}\right)$ are

$$
\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}, \frac{z_{1}+z_{2}}{2} .\right)
$$

5. The coordinates of the centroid of the triangle, whose vertices are $\left(x_{1}, y_{1}, z_{1}\right)\left(x_{2}, y_{2}, z_{2}\right)$ and $\left(x_{3}, y_{3}, z_{3}\right)$, are

$$
\left(\frac{x_{1}+x_{2}+x_{3}}{3}, \frac{y_{1}+y_{2}+y_{3}}{3}, \frac{z_{1}+z_{2}+z_{3}}{3}\right)
$$

