## 1. Details of Module and its structure

| Module Detail |  |
| :---: | :---: |
| Subject Name | Mathematics |
| Course Name | Mathematics 01 (Class XI, Semester - 1) |
| Module Name/Title | Linear inequalities - Part 3 |
| Module Id | kemh_10603 |
| Pre-requisites | Basic knowledge of drawing graphs of the linear equations and solving simultaneous equations. |
| Objectives | After going through this lesson, the learners will be able to understand the following: <br> - Difference between equation and inequality. <br> - Solve system of linear inequalities in two variables. <br> - Plot a graph of systems of linear inequalities. <br> - Describe the feasible regions when inequalities are plotted graphically. |
| Keywords | Linear inequality, Graphical solution, Shaded region |

## 2. Development Team

| Role | Name | Affiliation |
| :--- | :--- | :--- |
| National MOOC Coordinator <br> (NMC) | Prof. Amarendra P. Behera | CIET, NCERT, New Delhi |
| Program Coordinator | Dr. Mohd. Mamur Ali | CIET, NCERT, New Delhi |
| Course Coordinator (CC) / PI | Dr. Til Prasad Sarma | DESM, NCERT, New Delhi |
| Course Co-Coordinator / Co- <br> PI | Dr. Mohd. Mamur Ali | CIET, NCERT, New Delhi |
| Subject Matter Expert (SME) | Ms. Shalu Kapoor <br> Review Team <br> Paf. Suresh Kumar Singh <br> Gautam (Retd.) | VIIT, Gajuwaka, Visakhapatnam |

## 1. Graphical Solution of Linear Inequalities in Two Variables

The line divides the Cartesian plane into two parts. Each part is known as a half plane. A vertical
line divides the plane in left and right half planes and a non-vertical line divides the plane into
lower and upper half planes.


Graph of a linear inequality in one variable can be represented on number line as well as in the plane but the graph of a linear inequality in two variables can be represented in the plane only. There are four types of linear inequality in two variables.
(i) $a x+b y>c$
(ii) $a x+b y \geq c$
(iii) $a x+b y<c$
(iv) $\quad a x+b y \leq c(a \neq 0, b \neq 0)$

Working rule to graph inequalities of the form $a x+b y>c$ or $a x+b y<c$
Step 1: Draw the graph of the line $a x+b y=c$
Using two points $(c / a, 0)$ and $(0, c / b)$ which are on $x$ - axis and $y$-axis respectively.
Step 2: Substitute any point $(h, k)$ in the inequality $a x+b y>c$. If inequality is satisfied by the
point ( $h, k$ ) then graph of inequality is shaded region containing the point $(h, k)$, otherwise graph is the shaded region not containing ( $h, k$ ). If line does not pass through origin, take the point ( 0 , 0 ) to check for the region.
Note: Points on the line $a x+b y=c$ are not to be included in the shaded region to draw the inequality $a x+b y>c$ or $a x+b y<c$. So draw a broken line or dotted line in the shaded region.

Working rule to graph inequalities of the form $a x+b y \geq c$ or $a x+b y \leq c(a>0)$
If an inequality is of the type $a x+b y \geq c$ or $a x+b y \leq c$, then draw the shaded region corresponding to inequality $a x+b y>c$ or $a x+b y<c$ as well as the points on the line $a x+b y=$ $c$. So a dark line is drawn in the shaded region in this case.

Example 1: Graph the inequality $x+2 y>3$, where $x$ and $y$ are real numbers.
Solution: To draw the line represented by $x+2 y=3$, consider the points $(3,0)$ and $(0,3 / 2)$ which satisfy the given equation and are on $x$ - axis and $y$-axis respectively.


The graph of $x+2 y=3$ is a line that divides the Cartesian plane into two parts; 'I' above the line and 'II' below the line. On taking any point in the part which is above the line say $(4,2)$ and substituting in the inequality $x+2 y>3$,
$4+2(2)=8>3$ which is true
Thus, shaded region will be the part containing the point $(4,2)$. Since inequality is strict inequality thus line $x+2 y=3$ will be dotted line. Thus graph of inequality will be as


Example 2: Graph the inequality $y+8 \geq 2 x$, where $x$ and $y$ are real numbers.
Solution: Given $\quad y+8 \geq 2 x$

$$
\begin{array}{ll}
\Rightarrow & 8 \geq 2 x-y \\
\Rightarrow & 2 x-y \leq 8
\end{array}
$$

To draw the graph of $2 x-y=8$, consider the points $(4,0)$ and $(0,-8)$ which are on $x$ - axis and $y$ - axis respectively.
Graph of $2 x-y=8$ is a line that divides the Cartesian plane into two parts. On taking any point say $(0,0)$ and substituting in the inequality $2 x-y \leq 8$, we get
$2(0)-(0)=0 \leq 8$ which is true.
Thus, shaded region will be the part containing the point $(0,0)$. Since inequality is slack inequality thus line $2 x-y=8$ will be dark line. Thus graph of inequality will be as


Example 3: Graph the inequality $3 y-5 x<30$, where $x$ and $y$ are real numbers.

Solution: Given $\quad 3 y-5 x<30$
To draw the line $3 y-5 x=30$, consider the points $(-6,0)$ and $(0,10)$ which are on $x$ - axis and $y$ - axis respectively.

Line $3 y-5 x=30$ divides the Cartesian plane into two parts. On taking any point say $(0,0)$ and substituting in the inequality $3 y-5 x<30$, we get $3(0)-5(0)=0<30$ which is true.

Thus, shaded region will be the part containing the point $(0,0)$. Since inequality is strict inequality thus line $3 y-5 x=30$ will be dotted line. Thus graph of inequality will be as


Example 4: Graph the inequality $2 x-3 y>6$, where $x$ and $y$ are real numbers.
Solution: Given $2 x-3 y>6$
To draw the line $2 x-3 y=6$, consider the points $(3,0)$ and $(0,-2)$ which are on $x-$ axis and $y-$ axis respectively.

Line $2 x-3 y=6$ divides the Cartesian plane into two parts. On taking any point say $(0,0)$ and substituting in the inequality $2 x-3 y>6$, $2(0)-3(0)=0<6$ thus inequality is not true.

Thus, shaded region will be the part not containing the point $(0,0)$. Since inequality is strict inequality thus line $2 x-3 y=6$ will be dotted line. Thus, graph of inequality will be as


Example 5: Graph the inequality $x-y \leq 3$, where $x$ and $y$ are real numbers.
Solution: Given $\quad x-y \leq 3$
To draw the line $x-y=3$, consider the points $(3,0)$ and $(0,-3)$ which are on $x$ - axis and $y-$ axis respectively.
Line $x-y=3$ divides the Cartesian plane into two parts. On taking any point say $(0,0)$ and substituting in the inequality $x-y \leq 3$,
(0) - (0) $=0 \leq 3$ thus inequality is true.

Thus, shaded region will be the part containing the point $(0,0)$. Since inequality is slack inequality thus line $x-y=3$ will be dark line. Thus, graph of inequality will be as


Example 6: Graph the inequality $3 x-2 y \leq 6$, where $x$ and $y$ are real numbers.

Solution: Given $\quad 3 x-2 y \leq 6$
To draw the line $3 x-2 y=6$, consider the points $(2,0)$ and $(0,-3)$ which are on $x$ - axis and $y-$ axis respectively.
Line $3 x-2 y=6$ divides the Cartesian plane into two parts. On taking any point say $(0,0)$ and substituting in the inequality $3 x-2 y \leq 6$,
(0) - (0) $=0 \leq 6$ thus inequality is true.

Thus, shaded region will be the part containing the point $(0,0)$. Since inequality is slack inequality thus line $3 x-2 y=6$ will be dark line. Thus, graph of inequality will be as


Example 7: Graph the inequality $5 x-3 y \leq 15$, where $x$ and $y$ are real numbers.
Solution: Given $5 x-3 y \leq 15$
To draw the line $5 x-3 y=15$, consider the points $(3,0)$ and $(0,-5)$ which are on $x$-axis and $y$ - axis respectively.

Line $5 x-3 y=15$ divides the Cartesian plane into two parts. On taking any point say $(0,0)$ and substituting in the inequality $5 x-3 y \leq 15$,
$(0)-(0)=0<15$ thus inequality is true.
Thus, shaded region will be the part containing the point $(0,0)$. Since inequality is slack inequality thus line $5 x-3 y=15$ will be dark line. Thus, graph of inequality will be as


Example 8: Graph the inequality $3 x-2 y \leq 0$, where $x$ and $y$ are real numbers.
Solution: Given $\quad 3 x-2 y \leq 0$
Line $3 x-2 y=0$ or $3 x=2 y$ passes through origin $(0,0)$.
To draw the line, consider the points.
When $x=1, y=\frac{3}{2}=1.5$
When $x=2, y=3$
When $x=-1, y=\frac{-3}{2}=-1.5$
When $x=-2, y=-3$
Line $3 x-2 y=0$ divides the Cartesian plane into two parts. Since line passes through origin, thus, on taking any point say $(1,1)$ and substituting in the inequality $3 x-2 y \leq 0$, $3(1)-2(1)=3-2=1>0$ thus inequality is not true.

Thus, shaded region will be the part not containing the point $(1,1)$. Since inequality is slack inequality thus line $3 x-2 y=0$ will be dark line. Thus, graph of inequality will be as


Example 9: Graph the inequality $x-3 y<12$, where $x$ and $y$ are real numbers.
Solution: Given $\quad x-3 y<12$
To draw the line $x-3 y=12$, consider the points $(12,0)$ and $(0,-4)$ which are on $x$-axis and $y$ - axis respectively.

Line $x-3 y=12$ divides the Cartesian plane into two parts. On taking any point say $(0,0)$ and substituting in the inequality $x-3 y<12$,
(0) $-(0)=0<12$ thus inequality is true.

Thus, shaded region will be the part containing the point $(0,0)$. Since inequality is strict inequality thus line $x-3 y=12$ will be dotted line. Thus, graph of inequality will be as


Example 10: Graph the inequality $2 x+y>4$, where $x$ and $y$ are real numbers.
Solution: Given $\quad 2 x+y>4$

To draw the line $2 x+y=4$, consider the points $(2,0)$ and $(0,4)$ which are on $x-$ axis and $y-$ axis respectively.

Line $2 x+y=4$ divide the Cartesian plane into two parts. On taking any point say $(0,0)$ and substituting in the inequality $2 x+y>4$,
$2(0)+(0)=0<4$ thus inequality is not true.
Thus, shaded region will be the part not containing the point $(0,0)$. Since inequality is strict inequality thus line $2 x+y=4$ will be dotted line. Thus, graph of inequality will be asshown below


Example 11: Graph the inequality $x-5 y<-5$, where $x$ and $y$ are real numbers.
Solution: Given

$$
x-5 y<-5
$$

To draw the line $x-5 y=-5$, consider the points $(-5,0)$ and $(0,1)$ which are on $x-$ axis and $y-$ axis respectively.
Line $x-5 y=-5$ divides the Cartesian plane into two parts. On taking any point say $(0,0)$ and substituting in the inequality $x-5 y<-5$,
$(0)-(0)=0>-5$ thus inequality is not true.
Thus, shaded region will be the part not containing the point $(0,0)$. Since inequality is strict inequality thus line $x-5 y=-5$ will be dotted line. Thus, graph of inequality will be as


Example 12: Graph the inequality $3 y-2 x>24$, where $x$ and $y$ are real numbers.
Solution: Given $\quad 3 y-2 x>24$
To draw the line $3 y-2 x=24$, consider the points $(-12,0)$ and $(0,8)$ which are on $x$ - axis and $y$ - axis respectively.
Line $3 y-2 x=24$ divides the Cartesian plane into two parts. On taking any point say $(0,0)$ and substituting in the inequality $3 y-2 x>24$,
$3(0)-2(0)=0<24$ thus inequality is not true.
Thus, shaded region will be the part not containing the point $(0,0)$. Since inequality is strict inequality thus line $3 y-2 x=24$ will be dotted line. Thus, graph of inequality will be as


