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1. Introduction 

In 1806, Argand published a way of representing Real Numbers and Imaginary Numbers by a 

diagram using two axes at right angles to each other like the Cartesian Plane. With the x axis 

representing the Real Axis and the y axis representing the Imaginary Axis, this is called the 

Argand Plane or the Complex Plane. 

 

2. The Complex Plane or the Argand Plane 

Some complex numbers such as 2 + 4i, 

 –2 + 3i, 0 + 1i, 2 + 0i, –5 –2i and1 –2i which 

correspond to the ordered pairs (2, 4), ( – 2, 3), (0, 1), 

(2, 0), ( –5, –2), and (1,–2) respectively, have been 

represented geometrically by the points A, B, C, D, E, 

and F, respectively in the adjoining figure. 

The plane having a complex number assigned to each 

of its point is called the complex plane or the Argand 

plane. 

 

 

 

 

 

 

 



 
 

 

3. Modulus, Argument and Conjugate of a Complex Number 

In the Argand plane, the modulus of the complex number is defined 

as |𝑧| = |𝑥 +  𝑖𝑦| =  √𝑥2 + 𝑦2  

which is the distance between the point P(x, y) and the origin O (0, 

0). The points on the x-axis correspond to the complex numbers of 

the form a + i0 and the points on the y-axis correspond to the complex 

numbers of the form 0 + ib. 

The angle ′𝜃′ from the positive axis to the line segment in the 

anticlockwise direction is called the argument of the complex number z. 

Using trigonometry, 

  

And hence, 

 

 

Example: Find the modulus and argument of z= 4 + 3i. 

Solution: The complex number z = 4 + 3i is shown in the figure. It has been 

represented by the point Q which has coordinates (4,3). The modulus 

of z is the length of the line OQ 

which we can find using Pythagoras’ theorem. 

(OQ)2= 42+ 32= 16 + 9 = 25 

and hence OQ= 5 

 

To find the argument we must calculate the angle between the positive direction of x-axis and 

the line segment OQ in the anti-clockwise direction. We have labelled this θ in the figure. 

By referring to the right-angled triangle OQN in the figure, we see that 

tan 𝜃 =
3

4
 

arg 𝑧 = 𝜃 = tan−1(
3

4
) 

 



 
 

           When the complex number lies in the first quadrant, calculation of the modulus and argument 

is straight forward. For complex numbers outside the first quadrant we need to be a little bit 

more careful. Consider the following example. 

 

Example: Find the modulus and argument of  

z = 3 − 2i. 

Solution: The Argand diagram is shown in the 

figure. The point P with coordinates 

(3,−2) represents z= 3 – 2i. 

 

 

 

 

We use Pythagoras’ theorem in triangle ONP to find the modulus of z 

(OP)2= 32+ 22= 13 

OP=√13 

Using the symbol for modulus, we see that in this example 

|𝒛|  = √𝟏𝟑 

We must be more careful with the argument. When the angle θ shown in the figure is measured 

in a clockwise sense convention dictates that the angle is negative. We can find the size 

of the angle by referring to the right-angled triangle shown.  

Here 𝜃 is the argument of 𝑧 = 3 − 2𝑖,  

satisfying 𝑡𝑎𝑛𝜃 = −
2

3
, where 𝑐𝑜𝑠𝜃 =

3

√13
 𝑎𝑛𝑑 𝑠𝑖𝑛𝜃 = −

2

√13
 

 

Conjugate of a Complex Number 

 

The representation of a complex number z = x + iy and its conjugate               

z = x – iy in the Argand plane are, respectively, the points P (x, y) and Q 

(x, – y).Geometrically, the point (x, – y) is the mirror image of the point 

(x, y) on the real axis. 

 

 

 



 
 

4. Polar form of a Complex Number 

You will have already seen that a complex number is of the form z = a + bi. This form is called       

Cartesian form.  

A point P in the complex plane can also be represented uniquely by using its polar coordinates  

(r, θ) where r = |z| and θ = arg (z) 

We shall take the values of 𝜃, such that −𝜋 < 𝜃 ≤ 𝜋, called the principal argument of z and is 

denoted by arg z, unless specified otherwise. 

Example: What are the polar coordinates of the complex number ? 

Solution: In this example, a = 2 and b =  

 

 

⇒ 𝜃 =
2𝜋

3
 

Hence the polar coordinates of the number are(4,
2𝜋

3
).  

 

Example: Write down the polar form of 𝑧 = −1 + 𝑖√3.   

Solution: Let’s first get r 

 

Now let’s find arg z 

 

⸫   θ =  ( −√3) = π - 
𝜋

3 
 = 

2𝜋

3
 

So the polar form of z is  2[ cos (
2𝜋

3
) + i sin (

2𝜋

3
)] = 2[ cos (π - 

𝜋

3 
) +i sin( π - 

𝜋

3 
)] 

                                                                               = 2 [ -cos 
𝜋

3 
 + isin(

𝜋

3 
)] 

Having looked at a specific case, we will now look at the general case of a complex number z 

having (𝑎, 𝑏) as the Cartesian coordinates and (𝑟, 𝜃) as the polar coordinates. 

 

By Pythagoras Theorem 

𝑟2 = 𝑎2 + 𝑏2 ⇒ 𝑟 = √𝑎2 + 𝑏2 



 
 

By using the basic trigonometric ratios, 

𝑐𝑜𝑠𝜃 =
𝑎

𝑟
 and 𝑠𝑖𝑛𝜃 =

𝑏

𝑟
  or 𝑟𝑐𝑜𝑠𝜃 = 𝑎 𝑎𝑛𝑑 𝑟𝑠𝑖𝑛𝜃 = 𝑏 

The cartesian form of the complex number is given by 

𝑧 = 𝑎 + 𝑖𝑏 = 𝑟(𝑐𝑜𝑠𝜃 + 𝑖𝑠𝑖𝑛𝜃) 

 

5. Summary 

● The conjugate of the complex number z = a + ib, denoted by z , is given by 

z = a – ib. 

● The polar form of the complex number z = x + iy is r (cosθ + i sinθ), where  

𝑟 =  √𝑥2 + 𝑦2(the modulus of z) and cos 𝜃 =
𝑥

𝑟
, sin 𝜃 =

𝑥

𝑟
  (θ is known as the argument of z). 

The value of 𝜃, such that – π < 𝜃 ≤ π, is called the principal argument of z. 

 


