## 1. Details of Module and its structure

|  | Module Detail |
| :--- | :--- |
| Subject Name | Mathematics |
| Course Name | Mathematics 1 (Class XI, Semester - 1) |
| Module Name/Title | Complex Numbers - Argand Plane and Polar Representation; <br> Modulus and Conjugate: Part 2 |
| Module Id | Kemh_10502 |
| Pre-requisites | Representation of a point on the coordinate plane <br> - Pythagoras Theorem <br> - Basic trigonometric ratios in a right angle triangle |
| Objectives | After going through this lesson, the learners will be able to <br> understand the following: |
| 1. geometrical representation of a complex number <br> 2. understand different properties of complex numbers and <br> its representation on Argand plane |  |
| 3. solve different mathematical problems using Argand plane <br> 4. understand the polar or trigonometric form of a complex <br> number |  |
| 5. find the modulus of a complex number <br> 6. find the argument of a complex number <br> 7. identify the conjugate of a complex number and <br> familiarized with its properties |  |
| f. identify the modulus of a complex number and <br> familiarized with its properties |  |
| Keal Numbers; Imaginary; Complex Numbers; Argand Plane; <br> Polar Coordinates; Conjugate; Argument; Modulus |  |

## 2. Development Team

| Role | Name | Affiliation |
| :--- | :--- | :--- |
| National MOOC Coordinator <br> (NMC) | Prof. Amarendra P. Behera | CIET, NCERT, New Delhi |
| Program Coordinator | Dr. Indu Kumar | CIET, NCERT, New Delhi |
| Course Coordinator/ PI | Prof. Til Prasad Sarma | DESM, NCERT, New Delhi |
| Subject Coordinator | Anjali Khurana | CIET, NCERT, New Delhi |
| Subject Matter Expert (SME) | Neera Sukhwani | Step By Step School, New <br> Delhi |
| Review Team | Prof. S.K.S. Gautum (Retd.) <br> Prof. V.P. Singh (Retd.) <br> Prof. Ram Avtar (Retd.) | DESM, NCERT. New Delhi <br> DESM, NCERT. New Delhi <br> DESM, NCERT. New Delhi |

## TABLE OF CONTENTS

1. Introduction
2. The Complex Plane
3. Modulus, Argument and Conjugate of a Complex Number
4. Polar Form of a Complex Number
5. Summary

## 1. Introduction

In 1806, Argand published a way of representing Real Numbers and Imaginary Numbers by a diagram using two axes at right angles to each other like the Cartesian Plane. With the $x$ axis representing the Real Axis and the $y$ axis representing the Imaginary Axis, this is called the Argand Plane or the Complex Plane.

## 2. The Complex Plane or the Argand Plane

Some complex numbers such as $2+4 i$,
$-2+3 i, 0+1 i, 2+0 i,-5-2 i$ and $1-2 i$ which correspond to the ordered pairs $(2,4),(-2,3),(0,1)$, $(2,0),(-5,-2)$, and $(1,-2)$ respectively, have been represented geometrically by the points $\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}, \mathrm{E}$, and F , respectively in the adjoining figure.

The plane having a complex number assigned to each of its point is called the complex plane or the Argand plane.


## 3. Modulus, Argument and Conjugate of a Complex Number

In the Argand plane, the modulus of the complex number is defined

$$
\text { as }|z|=|x+i y|=\sqrt{x^{2}+y^{2}}
$$

which is the distance between the point $\mathrm{P}(x, y)$ and the origin $\mathrm{O}(0$, $0)$. The points on the $x$-axis correspond to the complex numbers of the form $a+i 0$ and the points on the $y$-axis correspond to the complex numbers of the form $0+i b$.

The angle ' $\theta$ ' from the positive axis to the line segment in the
 anticlockwise direction is called the argument of the complex number $z$.

Using trigonometry,

$$
\tan \theta=\frac{y}{x}
$$

And hence,

$$
\operatorname{argz}=\theta=\tan ^{-1} \frac{y}{x}
$$



Example: Find the modulus and argument of $z=4+3 i$.
Solution: The complex number $z=4+3 i$ is shown in the figure. It has been represented by the point Q which has coordinates $(4,3)$. The modulus of $z$ is the length of the line OQ
which we can find using Pythagoras' theorem.
$(\mathrm{OQ})^{2}=4^{2}+3^{2}=16+9=25$

and hence $\mathrm{OQ}=5$
$\therefore|z|=5$
To find the argument we must calculate the angle between the positive direction of $x$-axis and the line segment OQ in the anti-clockwise direction. We have labelled this $\theta$ in the figure.
By referring to the right-angled triangle OQN in the figure, we see that

$$
\begin{aligned}
& \tan \theta=\frac{3}{4} \\
& \arg z=\theta=\tan ^{-1}\left(\frac{3}{4}\right)
\end{aligned}
$$

When the complex number lies in the first quadrant, calculation of the modulus and argument is straight forward. For complex numbers outside the first quadrant we need to be a little bit more careful. Consider the following example.

Example: Find the modulus and argument of $z=3-2 i$.

Solution: The Argand diagram is shown in the figure. The point P with coordinates $(3,-2)$ represents $z=3-2 i$.


We use Pythagoras' theorem in triangle ONP to find the modulus of $z$
$(\mathrm{OP})^{2}=3^{2}+2^{2}=13$
$\mathrm{OP}=\sqrt{ } 13$
Using the symbol for modulus, we see that in this example

$$
|z|=\sqrt{13}
$$

We must be more careful with the argument. When the angle $\theta$ shown in the figure is measured in a clockwise sense convention dictates that the angle is negative. We can find the size of the angle by referring to the right-angled triangle shown.

Here $\theta$ is the argument of $z=3-2 i$,
satisfying $\tan \theta=-\frac{2}{3}$, where $\cos \theta=\frac{3}{\sqrt{13}}$ and $\sin \theta=-\frac{2}{\sqrt{13}}$

## Conjugate of a Complex Number

The representation of a complex number $z=x+i y$ and its conjugate $z=x-i y$ in the Argand plane are, respectively, the points $\mathrm{P}(x, y)$ and Q $(x,-y)$.Geometrically, the point $(x,-y)$ is the mirror image of the point $(x, y)$ on the real axis.


## 4. Polar form of a Complex Number

You will have already seen that a complex number is of the form $z=a+b i$. This form is called

## Cartesian form.

A point P in the complex plane can also be represented uniquely by using its polar coordinates $(r, \theta)$ where $r=|z|$ and $\theta=\arg (z)$
We shall take the values of $\theta$, such that $-\pi<\theta \leq \pi$, called the principal argument of $z$ and is denoted by $\arg z$, unless specified otherwise.
Example: What are the polar coordinates of the complex number $z=2-2 \sqrt{3} i$ ?
Solution: In this example, $a=2$ and $b=-2 \sqrt{3}$

$$
\begin{aligned}
& r=\sqrt{a^{2}+b^{2}}=\sqrt{2^{2}+(-2 \sqrt{3})^{2}}=\sqrt{4+12}=4 \\
& \tan \theta=\frac{b}{a}=\frac{-2 \sqrt{3}}{2}=-\sqrt{3} \\
& \quad \Rightarrow \theta=\frac{2 \pi}{3}
\end{aligned}
$$

Hence the polar coordinates of the number are $\left(4, \frac{2 \pi}{3}\right)$.

Example: Write down the polar form of $z=-1+i \sqrt{3}$.
Solution: Let's first get $r$
$r=|z|=\sqrt{1+3}=2$
Now let's find $\arg z$
$\tan \theta=\frac{b}{a}=-\sqrt{3}$
$\therefore \theta=(-\sqrt{3})=\pi-\frac{\pi}{3}=\frac{2 \pi}{3}$
So the polar form of $z$ is $2\left[\cos \left(\frac{2 \pi}{3}\right)+i \sin \left(\frac{2 \pi}{3}\right)\right]=2\left[\cos \left(\pi-\frac{\pi}{3}\right)+i \sin \left(\pi-\frac{\pi}{3}\right)\right]$

$$
=2\left[-\cos \frac{\pi}{3}+i \sin \left(\frac{\pi}{3}\right)\right]
$$

Having looked at a specific case, we will now look at the general case of a complex number $z$ having $(a, b)$ as the Cartesian coordinates and $(r, \theta)$ as the polar coordinates.

By Pythagoras Theorem

$$
r^{2}=a^{2}+b^{2} \Rightarrow r=\sqrt{a^{2}+b^{2}}
$$

By using the basic trigonometric ratios,
$\cos \theta=\frac{a}{r}$ and $\sin \theta=\frac{b}{r}$ or $r \cos \theta=a$ and $r \sin \theta=b$
The cartesian form of the complex number is given by

$$
z=a+i b=r(\cos \theta+i \sin \theta)
$$

## 5. Summary

- The conjugate of the complex number $z=a+i b$, denoted by $z$, is given by $z=a-i b$.
- The polar form of the complex number $z=x+i y$ is $r(\cos \theta+i \sin \theta)$, where $r=\sqrt{x^{2}+y^{2}}$ (the modulus of $z$ ) and $\cos \theta=\frac{x}{r}, \sin \theta=\frac{x}{r}$ ( $\theta$ is known as the argument of $z$ ). The value of $\theta$, such that $-\pi<\theta \leq \pi$, is called the principal argument of $z$.

