1. Details of Module and its structure

Module Detail	Mathematics
Subject Name	Mathematics 1 (Class XI, Semester - 1)
Course Name	Complex Numbers - Introduction; Operations on Complex Numbers: Part 1
Module Name/Title	kemh_10501

2. Development Team

Role	Name	Affiliation
National MOOC Coordinator (NMC)	Prof. Amarendra P. Behera	CIET, NCERT, New Delhi
Program Coordinator	Dr. Indu Kumar	CIET, NCERT, New Delhi
Course Coordinator/ PI	Prof. Til Prasad Sarma	DESM, NCERT, New Delhi
Subject Coordinator	Anjali Khurana	CIET, NCERT, New Delhi
Subject Matter Expert (SME)	Neera Sukhwani	Step By Step School, New Delhi
Review Team	Prof. S.K.S. Gautum (Retd.) Prof. V.P. Singh (Retd.) Prof. Ram Avtar (Retd.)	DESM, NCERT. New Delhi DESM, NCERT. New Delhi DESM, NCERT. New Delhi

TABLE OF CONTENTS

1. Introduction

2. Algebra of Complex Numbers

(i) Addition and Subtraction of Complex Numbers

(ii) Multiplication of Complex Numbers
(iii) Division of Complex Numbers
3. Quadratic Equations
4. Summary

1. INTRODUCTION

Consider the equation and solve it in the set of Real Numbers

$x^{2}+1=0$
$x^{2}=-1$
$x= \pm \sqrt{ }-1$
What number when multiplied by itself (squared) gives -1 ?
Since the square of any real number is positive, the above equation does not have any solution in the domain of Real Number system.

Therefore, it becomes necessary to extend the Real Number system to a system where $x^{2}=$
 -1 has a solution.

We denote $\sqrt{-1}$ by the symbol I, read as 'iota'.
Then we have $i^{2}=-1$.
This means that i is the solution of the equation $x^{2}+1=0$

COMPLEX NUMBERS (C)

A number of the form $a+i b$, where $a, b \in \mathrm{R}$ is called a Complex Number.
$i^{2}=-1$ and $i= \pm \sqrt{ }-1$

$$
z=a+i b
$$

$\operatorname{Re}(z)=a$ and $\operatorname{Im}(z)=b$
i.e. Real part of the number z is a and the Imaginary part of the number z is b.

Two complex numbers $z_{1}=a+i b$ and $z_{2}=c+i d$ are equal if $a=c$ and $b=d$.

Example: If $5 x+i(2 x-y)=3+i(-5)$, where x and y are real numbers, then find the values of x and y.

Solution: We have
$5 x+i(2 x-y)=3+i(-5)$
Equating the real and the imaginary parts of (1), we get
$5 x=3,2 x-y=-5$,
which, on solving simultaneously, give $x=\frac{3}{5} ; y=\frac{31}{5}$

Power of i

While $i^{2}=-1$, what would $i^{3}, i^{4}, i^{5}, \ldots$ and higher powers of i be
Observe the following pattern

$$
\begin{gathered}
i^{1}=i \\
i^{2}=-1 \\
i^{3}=i^{2} \cdot i=-1 \cdot i=-i \\
i^{4}=i^{2} \cdot i^{2}=-1 \cdot-1=1 \\
i^{5}=i^{4} \cdot i=i \\
i^{6}=i^{5} \cdot i=i \cdot i=i^{2}=-1 \\
i^{7}=i^{3}=-i \\
i^{8}=i^{4}=1
\end{gathered}
$$

In other words, to calculate any high power of i, you can convert it to a lower power by taking the closest multiple of 4 that's no bigger than the exponent and subtracting this multiple from the exponent. Here's how the shortcut works:

In general, for any integer $k, i^{4 k}=1,{ }^{i 4 k+1}=i,{ }^{, 4 k+2}=-1, i^{4 k+3}=-i$
$i^{99}=i^{96+3}=i^{(4 \times 24)+3}=i^{3}=i^{2} . i=-1 . i=-i$
Here are a few more examples:

- Simplify $\boldsymbol{i}^{\mathbf{1 7}}$.
$i^{17}=i^{16+1}=i^{4 \cdot 4+1}=i^{1}=i$
- Simplify $\boldsymbol{i}^{\mathbf{1 2 0}}$.
$i^{120}=i^{4 \cdot 30}=i^{4 \cdot 30+0}=i^{0}=\mathbf{1}$

- Simplify $i^{64,002}$.

$i^{64,002}=i^{64,000+2}=i^{4 \cdot 16,000+2}=i^{2}=-1$

2. Algebra of Complex Numbers

Addition and Subtraction of Complex Numbers

If $z_{1}=a+i b$ and $z_{2}=c+i d$, then
We define

$$
z_{1}+z_{2}=(a+c)+i(b+d)
$$

And $z_{1}-z_{2}=(a-c)+i(b-d)$

Example: Let $z=4+i$ and $w=2+2 i$. Find $w+z$.
Solution: $w+z$
$=(2+2 i)+(4+i)$
$=6+3 i$
$w-z$
$=(2+2 i)-(4+i)$
$=2+2 i-4-i$
$=-2+i$

The addition of complex numbers satisfy the following properties:
(i) The closure law: The sum of two complex numbers is a complex number,
i.e., $z_{1}+z_{2}$ is a complex number for all complex numbers z_{1} and z_{2}
(ii) The commutative law: For any two complex numbers z_{1} and z_{2},

$$
z_{1}+z_{2}=z_{2}+z_{1}
$$

(iii) The associative law: For any three complex numbers z_{1}, z_{2}, z_{3}

$$
\left(z_{1}+z_{2}\right)+z_{3}=z_{1}+\left(z_{2}+z_{3}\right)
$$

(iv) The existence of additive identity: There exists the complex number $0+i 0$ (denoted as 0), called the additive identity or the zero complex number, such that, for every complex number z, $z+0=z$.
(v) The existence of additive inverse: To every complex number $z=a+i b$, we have the complex number $-a+i(-b)$ (denoted as $-z$), called the additive inverse or negative of z. We observe that $z+(-z)=0$ (the additive identity).

Multiplication of Complex Numbers

 If $z_{1}=a+i b$ and $z_{2}=c+i d$, then we define$$
z_{1} \cdot z_{2}=(a c-d b)+i(a d+b c)
$$

- Simplify $(\mathbf{2}-\boldsymbol{i})(\mathbf{3}+\mathbf{4 i})$.

$$
\begin{aligned}
& (2-i)(3+4 i)=(2)(3)+(2)(4 i)+(-i)(3)+(-i)(4 i) \\
& =6+8 i-3 i-4 i^{2}=6+5 i-4(-1) \\
& =6+5 i+4=\mathbf{1 0}+\mathbf{5 i}
\end{aligned}
$$

The multiplication of complex numbers possesses the following properties, which we state without proofs.
(i)The closure law The product of two complex numbers is a complex number, the product $z_{1} \cdot z_{2}$ is a complex number for all complex numbers z_{1}, z_{2}.
(ii) The commutative law For any two complex numbers $z_{1}, z_{2}, z_{1} \cdot z_{2}=z_{2} \cdot z_{1}$
(iii) The associative law For any three complex numbers z_{1}, z_{2}, z_{3}

$$
\left(z_{1} \cdot z_{2}\right) \cdot z_{3}=z_{1} \cdot\left(z_{2} \cdot z_{3}\right)
$$

(iv) The existence of multiplicative identity There exists the complex number $1+i 0$ (denoted as 1), called the multiplicative identity such that $z .1=z$, for every complex number z.
(v) The existence of multiplicative inverse For every non-zero complex number $z=a+i b$ or $a+b i(a \neq 0, \mathrm{~b} \neq 0)$, we have the complex number

$$
\frac{a}{a^{2}+b^{2}}+i \frac{-b}{a^{2}+b^{2}}
$$

1 $z \cdot \frac{1}{z}=1$ (denoted by z or z^{-1}), called the multiplicative inverse of z such that (vi)The distributive law For any three complex numbers z_{1}, z_{2}, z_{3}
(a) $z_{1}\left(z_{2}+z_{3}\right)=z_{1} z_{2}+z_{1} z_{3}$
(b) $\left(z_{1}+z_{2}\right) z_{3}=z_{1} z_{3}+z_{2} z_{3}$

Conjugate and Modulus of a Complex Number

If $z=a+i b$, then its conjugate denoted by \underline{z} is defined as

$$
\underline{z}=a-i b
$$

And its modulus denoted by $|z|$ is defined as

$$
|z|=\sqrt{a^{2}+b^{2}}
$$

Example: Conjugate of $2+3 i$ is $2-3 i$ and its modulus is $\sqrt{4+9}=\sqrt{13}$

Division of Complex Numbers

If $z_{1}=a+i b$ and $z_{2}=c+i d$, then

$$
\begin{aligned}
\frac{z_{1}}{z_{2}}=\frac{z_{1} \cdot \frac{z_{2}}{z_{2} \cdot \underline{z_{2}}}}{=} & \frac{(a+i b)(c-i d)}{(c+i d)(c-i d)}=\frac{(a c+b d)+i((b c-a d)}{c^{2}+d^{2}} \\
& =\left(\frac{a c+b d}{c^{2}+d^{2}}\right)+i\left(\frac{b c-a d}{c^{2}+d^{2}}\right)
\end{aligned}
$$

Example: $\frac{3}{2+i}$

$$
\begin{array}{rl}
\frac{3}{2+i} & =\frac{3}{2+i} \cdot \frac{2-i}{2-i}=\frac{3(2-i)}{(2+i)(2-i)} \\
6 & 6-3 i \\
A-2 i+2 i-i^{2} & 6-3 i \\
4-(-1) \\
& =\frac{6-3 i}{4+1}=\frac{6-3 i}{5}=\frac{6}{5}-\frac{3}{5} i
\end{array}
$$

Example: $(4+2 i) \div(3-i)$

$$
\frac{(4+2 i)}{(3-i)}=\frac{(4+2 i)}{(3-i)} \cdot \frac{(3+i)}{(3+i)}
$$

$$
\begin{aligned}
& =\frac{12+4 i+6 i+2 i^{2}}{9+3 i-3 i-i^{2}}=\frac{12+10 i+2(-1)}{9-(-1)} \\
& =\frac{10+10 i}{10}=\frac{1+i}{1}=1+i
\end{aligned}
$$

3. Quadratic Equations

We are already familiar with the quadratic equations and have solved them in the set of real numbers in the cases where discriminant is non-negative, i.e., ≥ 0,

Let us consider the following quadratic equation:
$a x^{2}+b x+c=0$ with real coefficients a, b, c and $a \neq 0$.

Recall that the quadratic formula is given by
$x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$

- If the discriminant i.e. $\boldsymbol{b}^{\mathbf{2}} \mathbf{- 4 a c}>\mathbf{0}$, there are two real solutions to $a x^{2}+b x+c=0$.
- If $\boldsymbol{b}^{\mathbf{2}}-\mathbf{4 a c}=\mathbf{0}$, there are two repeated roots and hence one real solution to $a x^{2}+b x+c=0$.
- If $b^{2}-4 a c<0$, there is no real solution to $\boldsymbol{a} \boldsymbol{x}^{2}+\boldsymbol{b} \boldsymbol{x}+\boldsymbol{c}=\mathbf{0}$

But now, we know that we can find the square root of negative real numbers in the set of complex numbers. Therefore, the solutions to the above equation are available in the set of complex numbers which are given by

$$
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}=\frac{-b \pm \sqrt{4 a c-b^{2}} i}{2 a}
$$

Example: Solve $x^{2}+x+1=0$
Solution: Here, $b^{2}-4 a c=1^{2}-4 \times 1 \times 1=1-4=-3$
Therefore, the solutions are given by $\frac{-1 \pm \sqrt{-3}}{2}=\frac{-1 \pm \sqrt{3} i}{2}$

4. Summary

* A number of the form $a+i b$, where a and b are real numbers, is called a complex number, a is called the real part and b is called the imaginary partof the complex number.

Let $z_{1}=a+i b$ and $z_{2}=c+i d$. Then
(i) $z_{1}+z_{2}=(a+c)+i(b+d)$
(ii) $z_{1} z_{2}=(a c-b d)+i(a d+b c)$

* The conjugate of the complex number $z=a+i b$, denoted by \underline{z}, is given by $a-i b$

For any non-zero complex number $z=a+i b(a \neq 0, b \neq 0)$, there exists the complex
number $\frac{a}{a^{2}+b^{2}}+i \frac{-b}{a^{2}+b^{2}}$ (denoted by $\frac{1}{z}$ or z^{-1}), called the multiplicative inverse of z such that $z \cdot \frac{1}{z}=1$

* If $z_{1}=a+i b$ and $z_{2}=c+i d$, then

$$
\frac{z_{1}}{z_{2}}=\left(\frac{a c+b d}{c^{2}+d^{2}}\right)+i\left(\frac{b c-a d}{c^{2}+d^{2}}\right)
$$

* For any integer $k, i^{4 k}=1, i^{4 k+1}=i, i^{4 k+2}=-1, i^{4 k+3}=-i$
* The solutions of the quadratic equation $a x^{2}+b x+c=0$, where $a, b, c \in R, a \neq 0, b^{2}-4 a c<0$, are given by

$$
x=\frac{-b \pm \sqrt{4 a c-b^{2}} i}{2 a}
$$

