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Example 1: Prove by mathematical induction 2n+1< 2n, for all natural numbers n ≥3 .

Solution:

    Let P(n) be the given statement, i.e.,

    P(n): 2n+1 < 2n for n ≥3

     For n = 3, P(3): 2×3+1 < 23

        i.e.,   7 < 8, which is true

Assume that P(n) is true for some positive integer k, i.e.,

    P(k) : (2k+1) < 2k +  ___________(1)

 We shall now prove that P(k+1) is true, i.e.,

 P(k+1): 2(k+1) +1 < 2k+1 __________(2)

  Now, 2(k+1)+1= 2k+3

                           = (2k+1)+2

                            < 2k + 2 ≤  2(2k) = 2k+1

          Hence, 2(k+1) + 1< 2k+1

 Thus, P(k+1) is true whenever P(k) is true.

Hence, from the principle of mathematical induction, the statement P(n) is true for all n.

Example 2: Prove by induction, that x2n – y2n is divisible  by (x+y) where x,y are distinct real

numbers for all  n ϵ  N.

Solution:

Let P(n) be the given statement, i.e.,

 P(n): x2n – y2n is divisible  by (x+y)

  P(1): x2 – y2  = (x-y)(x+y) which is divisible  by (x+y)

  Hence P(1) is true.

Assume that P(k) is true, i.e.,

P(k): x2k – y2k is divisible  by (x+y)_____________(1)

We shall now prove that P(k+1) is true, i.e.,

  P(k+1):  x2(k+1)  –  y2(k+1) is  divisible   by  (x+y)__________(2)                          

  Now, let us consider the expression:  x2k x2 – y2k y2

                                   = x2k x2 – y2kx2+ y2k x2 – y2k y2

                  



                                                              = x2 (x2k– y2k)+ y2k( x–y)(x+y)

Since, the expression x2 (x2k– y2k) is divisible by (x+y) [using (1)] and y2k( x–y)(x+y) is divisible

by (x+y), therefore, P(k+1) is true whenever P(k) is true

Hence, by principle of mathematical induction, P(n) is true for all n ϵ  N.

Example 3: By mathematical induction, prove that n5
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Solution:
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  = 1 which is a positive integer

Hence P(1) is true.

Assume that P(k) is true i.e.,
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  is a positive integer _______(1)

We shall now prove that P(k+1) is true, i.e.,

P (k )=
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Now, let us consider the expression, 
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         = a positive integer + a positive integer +1 [using (1)]

         = a positive integer i.e., P(k+1) is true whenever P(k) is true

Hence, by principle of mathematical induction, P(n) is true ∀ n ϵ  N.

Example 4: Prove by the principle of mathematical induction, ∀ n ϵ

N.
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Assume that P(k) is true, i.e.,
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We shall now prove P(k+1) is true, i.e.,
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Thus, P(k+1) is true whenever P(k) is true.

 Hence, by principle of mathematical induction, P(k) is true.

Example 5: prove by the principle of mathematical induction, ∀ n ϵ

N

          sin sin θ+sin sin 2θ+sin sin 3θ+⋯⋯+sin sinnθ  = 
sinsin (n+1

2 )θ sin sin( n2 )θ
sin sin

θ
2

Solution:

  Let P(n) be the given statement i.e.,



   P(n): sin sin θ+sin sin 2θ+sin sin 3θ+⋯⋯+sin sin nθ  = 
sinsin (n+1

2 )θ sin sin( n2 )θ
sin sin

θ
2

  

  P(1): sin sinθ=

sin sin( 1+1
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=sin sin θ , which is true

Assume that P(k) is true i.e.,

   P(n):  sin sin θ+sin sin 2θ+sin sin 3θ+⋯⋯+sin sin k θ  =  
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We shall now prove P(k+1) is true, i.e.,
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Now let us consider
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  Thus, P(k+1) is true whenever P(k) is true.

Hence, by principle of mathematical induction, P(n) is true ∀ n ϵ  N.

Example 6: Use mathematical induction to prove

    ⌊n<( n+1
2 )

n

, where n ϵ  N and n >1

Solution:

 Let P(n) be the given statement, i.e.,

  P(n): ⌊n<( n+1
2 )

n

Now, P(2): ⌊2<( 2+1
2 )

2

i.e., 2<
9
4

 which is true.

Assume that P(k) is true i.e.,

  P(n): ⌊k<( k+1
2 )

k

___________(1)

We shall now prove P(k+1) is true, i.e.,

P(k): ⌊k+1<( k+2
2 )

k+ 1

___________(2)

Now, ⌊k+1= (k+1 )⌊ k< (k+1 )( k+1
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k

=
(k+1 )k+ 1
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 By binomial theorem,

  (1+
1

k+1 )
k +1

=1+(k+1 ) 1
k+1

+⋯⋯

⟹( k+2
k+1 )

k+1

>2
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From (3) and (4)

   ⌊k+1<( k+2
2 )

k+ 1

 Thus, P(k+1) is true whenever P(k) is true.

 Hence, by principle of mathematical induction P(k) is true.
   


