1. Details of Module and its structure

Module Detail		
Subject Name	Mathematics	
Course Name	Mathematics 01 (Class XI, Semester - 1)	
Module Name/Title	Principle of Mathematical Induction- Part 1	
Module Id	kemh_10401	
Pre-requisites	Knowledge about Mathematical Inductions.	
Objectives	 After going through this lesson, the learners will be able to understand the following: Principle of Mathematical Induction Examples of Mathematical Induction 	
Keywords	Mathematical Induction, Examples	

2. Development Team

Role	Name	Affiliation
National MOOC Coordinator (NMC)	Prof. Amarendra P. Behera	CIET, NCERT, New Delhi
Program Coordinator	Dr. Mohd. Mamur Ali	CIET, NCERT, New Delhi
Course Coordinator (CC) / PI	Dr. Til Prasad Sarma	DESM, NCERT, New Delhi
Course Co-Coordinator / Co-PI	Dr. Mohd. Mamur Ali	CIET, NCERT, New Delhi
Subject Matter Expert (SME)	Mr. Rahul Sofat	Air Force Golden Jubilee
		Institute, New Delhi
Review Team	Prof. Bhim Prakash Sarrah	Assam University, Tezpur

Introduction: In this module, we will prove certain results or statements (including inequality) in terms of n. where n is a positive integer using principle of mathematical induction.

The principle of mathematical induction

Suppose there is a given statement P(n) involving the natural number n such that

- 1. The statement is true for n=1, i.e., P(1) is true and
- If the statement is true for n = k(where k is some positive integer), then the statement is also true for n = k+1, i.e., truth of P(k) implies the truth of P(k+1).

Then, P(n) is true for all natural number n.

Note:

In the above statement property (i) is simply a statement of fact. There may be instances when a statement is true for n ≥ r, where r is some positive integer other than 1 (say 2 or 3 etc.)

We shall verify the result for n = r i.e., in step 1, we shall show P(r) is true.

The property given in step (ii) is a conditional property. It does not assert that the given statement is true for n = k, but only that if it is true for n = k, then it is true for n = k+1. This step is also referred as inductive step.

Example-1 For all $n \ge 1$, prove that

$$1+2+3+...+\frac{n(n+1)}{2}$$

Solution: let the given statement be P(n), i.e.,

P (n): 1+2+3+....+
$$\frac{n(n+1)}{2}$$

For n = 1, P (1): 1 = 1(1+1)/2 = 1, which is true

Assume that P (n) is true for some positive integer k, i.e.,

P (k+): 1+2+3+.....+k =
$$\frac{k(k+1)}{2}$$
(1)

We shall now prove that P(k+1) is also true, i.e.

P (k+1): 1+2+3+.....+k + (k+1) = k+1+1(k+1)(2)

LHS =
$$(1+2+3+....+k) + (k+1)$$

= $\frac{k(k+1)}{2} + (k+1)$ using (1)
= $(k+1) \left[\frac{R}{2} + 1\right]$
= $\frac{(R+1)(R+2)}{2}$
= $\frac{(k+1)[(k+1)+1]}{2}$
= RHS

Thus P(R+1) is true, whenever P(k) is true. Hence, from the principle of mathematical induction, the statement P(n) is true for all natural number n

Example-2 Prove the following by using the principle of mathematical

induction for all
$$n \in N$$
: $a+ar+ar^2+...+ar^{n-1}=\frac{a(r^n-1)}{r-1}$

Solution: let the given statement be P (n), i.e.,

P(n):
$$a+ar+ar^2+...+ar^{n-1}=\frac{a(r^n-1)}{r-1}$$

For n = 1, P (1): a =
$$\frac{a(r-1)}{(r-1)}$$
 = a , which is true

Assume that P (n) is true for some positive integer R, i.e.

P(n):
$$a+ar+ar^2+...+ar^{R-1}=\frac{a(r^R-1)}{r-1}...$$
 (1)

We shall now prove that P(R+1) is also true, i.e.

P(R+1):
$$a + ar + ar^{2} + ... + ar^{R-1} + ar^{R} = \frac{a(r^{R} - 1)}{r - 1}$$
 ... (2)
LHS = $(a + ar + ar^{2} + ... + ar^{R-1}) + ar^{R}$
= $\frac{a(r^{R} - 1)}{r - 1} + ar^{R}$ (using 1)
= $\frac{ar^{R} - a + ar^{R}(r - 1)}{r - 1}$
= $\frac{ar^{R} - a + ar^{R+1} - ar^{R}}{r - 1}$

$$= \frac{a(r^{R+1}-1)}{r-1} = \text{RHS}$$

Thus P (R+1) is true, whenever P (k) is true.

Hence from the principle of mathematical induction, the statement P (n) is true for all natural numbers n.

Example-3 Using the principle of mathematical induction

Prove that: $\frac{1}{1.3} + \frac{1}{3.5} + \frac{1}{5.7} + \dots + \frac{1}{(2n-1)(2n+1)} = \frac{n}{2n+1}$

Where n is any positive integer

Solution: we can write

P(n):
$$\frac{1}{1.3} + \frac{1}{3.5} + \frac{1}{5.7} + \dots + \frac{1}{(2n-1)(2n+1)} = \frac{n}{2n+1}$$

We note that P (1): $\frac{1}{1.3} = \frac{1}{2 \times 1 + 1} = \frac{1}{3}$, which is true

Thus P(n) is true for n = 1

Assume P (n) is true for some natural number R,

i.e. P(R):
$$\frac{1}{1.3} + \frac{1}{3.5} + \frac{1}{5.7} + \dots + \frac{1}{(2R-1)(2R+1)} = \frac{R}{2R+1}$$
 ...(1)

we need to prove P(R+1) is true i.e.

$$P(R+1): \frac{1}{1.3} + \frac{1}{3.5} + \frac{1}{5.7} + \dots + \frac{1}{(2R-1)(2R+1)} + \frac{1}{(2R+1)(2R+3)} = \frac{R+1}{2(R+1)+1} \dots (2)$$

$$LHS = \left[\frac{1}{1.3} + \frac{1}{3.5} + \frac{1}{5.7} + \dots + \frac{1}{(2R-1)(2R+1)}\right] + \frac{1}{(2R+1)(2R+3)} \quad (using 1)$$

$$= \frac{R}{2R+1} + \frac{1}{(2R+1)(2R+3)}$$

$$= \frac{1}{2R+1} \left[R + \frac{1}{(2R+3)}\right]$$

$$= \frac{1}{2R+1} \frac{R(2R+3)+1}{2R+3}$$

$$= \frac{1}{2R+1} \times \frac{2R^2 + 3R + 1}{2R+3}$$

$$= \frac{1}{2R+1} \times \frac{(R+1)(2R+1)}{2R+3}$$

$$= \frac{R+1}{2R+3}$$
$$= \frac{R+1}{(2R+2)+1}$$
$$= \frac{R+1}{(2R+2)+1} = \text{RHS}$$

Thus P(R+1) is true whenever P(R) is true.

Hence, by the principle of mathematical induction, P(n) is true for all natural number N

Example-4: Prove by the principle of Mathematical Induction

$$1^{3}+2^{3}+3^{3}+\ldots+n^{3}=(1+2+3+\ldots+n)^{2}$$

Solution: let the given statement be P(n), i.e.,

P(n):
$$1^3 + 2^3 + 3^3 + \ldots + n^3 = (1 + 2 + 3 + \ldots + n)^2$$

For n=1, P(1): $1^3 = 1 = 1^2$, which is true

Assume that P(n) is true for some positive integer k, i.e.,

P(k):
$$1^3 + 2^3 + 3^3 + \dots + k^3 = (1 + 2 + 3 + \dots + k)^2 \dots (1)$$

We shall now prove that P(k+1) is also true, i.e.,

P(k+1):
$$1^{3}+2^{3}+3^{3}+...+k^{3}+(k+1)^{3}=(1+2+3+...+(k+1))^{2}$$
 ... (2)
LHS = $1^{3}+2^{3}+3^{3}+...+k^{3}$)+ $(k+1)^{3}$
= $(1+2+3+...+k)^{2}$ + $(k+1)^{3}$
= $\left[\frac{k(k+1)}{2}\right]^{2}$ + $(k+1)^{3}$
= $\frac{k^{2}(k+1)^{2}}{4}$ ++ $(k+1)^{3}$
= $(k+1)^{2}\left[\frac{k^{2}}{4}+k+1\right]$

$$= (k+1)^{2} \left[\frac{k^{2}+4k+4}{4} \right]$$

$$= \left[\frac{(k+1)^{2}(k+2)^{2}}{2}\right]^{2}$$

=
$$(1+2+3+...+(k+1))^2$$
 = RHS

Thus P(k+1) is true, whenever P(k) is true.

Hence, from the principle of mathematical induction, the statement P(n) is true for all natural numbers n.

Example: 5 prove by the Principle of mathematical induction for all $n \in N$

 $1.2+22^2+32^3+\ldots+n2^n=(n-1)2^{n+1}+2$

Solution: let the given statement be P(n), i.e.

 $P(n): 1.2+22^2+32^3+\ldots+n2^n=(n-1)2^{n+1}+2$

For n = 1, $P(1) : 1.2 = 2 = (1-1) 2^2 + 2 = 2$, which is true

Assume that P(n) is true for some positive integer k, i.e.,

$$P(k): 1.2+22^2+32^3+\ldots+k2^k=(k-1)2^{k+1}+2\ldots(1)$$

We shall now prove that P(k+1) is also true, i.e.,

$$P(k+1): 1.2 + 22^{2} + 32^{3} + \dots + k 2^{k} + (k+1)2^{k+1} = (k)2^{k+2} + 2\dots(2)$$

$$L H S = (1.2 + 22^{2} + 32^{3} + \dots + k 2^{k}) + (k+1)2^{k+1}$$

$$= [(k-1)2^{k+1} + 2] + (k+1)2^{k+1} + 2$$

$$= (k-1)2^{k+1} + (k+1)2^{k+1} + 2$$

$$= (k-1+k+1)2^{k+1} + 2$$

$$= 2k 2^{k+1} + 2$$

$$= k 2^{k+2} + 2$$

=R H S

Thus P(k+1) is true, whenever P(k) is true.

Hence from the principle of mathematical induction, the statement P(n) is true for all natural numbers n.

Example-6: prove by the principle of mathematical induction that

7+77+777+...+7777...7 =
$$\frac{7}{81} (10^{n+1} - 9n - 10)$$

For all $n \in N$

Solution: let the given statement be P (n), i.e.,

For n = 1, P(1):
$$\frac{7}{81}(10^2 - 9 - 10) = \frac{7}{81} \times 81 = 7$$
, which is true.

Assume that P (n) is true for some positive integer k, i.e.

7+77+777+...+ 7777...7 =
$$\frac{7}{81} (10^{k+1} - 9k - 10)...(1)$$

We shall now prove that P(k+1) is also true, i.e.,

P (k+1): 7+77+777+...+ 7777...7 + 77777...7 =
$$\frac{7}{81} (10^{k+2} - 9(k+1) - 10)...(2)$$

L H S = (7+77+777+...+7777...7) + 77777...7

$$= \frac{7}{81} (10^{k+1} - 9k - 10) + 77777...7$$
 (using 1)

$$= \frac{7}{81} (10^{k+1} - 9k - 10) + (1 + 10 + 10^2 + ... + 10^k)$$

$$= \frac{7}{81} (10^{k+1} - 9k - 10) + 7 \frac{(10^{k+1} - 1)}{10 - 1}$$

$$= \frac{7}{81} (10^{k+1} - 9k - 10 + 9.10^{k+1} - 9)$$

$$= \frac{7}{81} (10^{k+2} - 9(k+1) - 10) = R H S$$

Hence P (k+1) is true, whenever P (k) is true

Hence from the principle of mathematical induction the statement P(n) is true for all natural numbers n.

Example-7: Using principle of mathematical induction, prove that

$$\cos \cos \alpha \cos \cos 2\alpha \cos \cos 3\alpha \cos \cos 4\alpha \dots \cos \cos (2^n \alpha) = \frac{\sin \sin (2^n \alpha)}{2^n \sin \sin \alpha}$$

For all $n \in N$

Solution: let the given statement be P (n), i.e.

P (n): $\cos \cos \alpha \cos \cos 2\alpha \cos \cos 3\alpha \cos \cos 4\alpha \dots \cos \cos (2^n \alpha) = \frac{\sin \sin (2^n \alpha)}{2^n \sin \sin \alpha}$

For n = 1, P (1): $\cos \cos \alpha = \frac{\sin \sin (2\alpha)}{2 \sin \sin \alpha} = \frac{(\alpha) \cos \cos \alpha}{2 \sin \sin \alpha} = \cos \cos \alpha$,

Assume that P (n) is true for some positive integer k, i.e.

P (k): $\cos \cos \alpha \cos \cos 2\alpha \cos \cos 3\alpha \cos \cos 4\alpha \dots \cos \cos (2^k \alpha) = \frac{\sin \sin (2^k \alpha)}{2^k \sin \sin \alpha} \dots (1)$

Let us now prove that P(k+1) is true, i.e.

$$P(k + 1):$$

 $\cos\cos\alpha\cos2\alpha\cos2\alpha\cos3\alpha\cos4\alpha\ldots\cos\cos(2^{k-1}\alpha)\cos\cos(2^k\alpha) = \frac{\sin\sin(2^{k+1}\alpha)}{2^{k+1}\sin\sin\alpha}\ldots(2)$

L H S = $\left[\cos \cos \alpha \cos \cos 2\alpha \cos \cos 3\alpha \cos \cos 4\alpha \dots \cos \cos (2^{k-1}\alpha)\right]\cos \cos (2^k\alpha)$

 $= \left[\frac{\sin\sin(2^{k}\alpha)}{2^{k}\sin\sin\alpha}\right] \cos\cos(2^{k}\alpha)$ $= \frac{2\sin\sin(2^{k}\alpha)\cos\cos(2^{k}\alpha)}{2^{k}\cos\cos(2^{k}\alpha)\cos(2^{k}\alpha)\cos$

$$2^{k+1}$$
sin sin α

 $= \frac{\sin \sin \left(2^{k+1} \alpha\right)}{2^{k+1} \sin \sin \alpha} = R H S$

Hence P (k+1) is true, whenever P (k) is true.

Hence from the principle of mathematical induction the statement P (n) is true for all natural numbers n.