## 1. Details of Module and its structure

| Module Detail |  |
| :---: | :---: |
| Subject Name | Mathematics |
| Course Name | Mathematics 01 (Class XI, Semester - 1) |
| Module Name/Title | Principle of Mathematical Induction- Part 1 |
| Module Id | kemh_10401 |
| Pre-requisites | Knowledge about Mathematical Inductions. |
| Objectives | After going through this lesson, the learners will be able to understand the following: <br> - Principle of Mathematical Induction <br> - Examples of Mathematical Induction |
| Keywords | Mathematical Induction, Examples |

## 2. Development Team

| Role | Name | Affiliation |
| :--- | :--- | :--- |
| National MOOC Coordinator <br> (NMC) | Prof. Amarendra P. Behera | CIET, NCERT, New Delhi |
| Program Coordinator | Dr. Mohd. Mamur Ali | CIET, NCERT, New Delhi |
| Course Coordinator (CC) / PI | Dr. Til Prasad Sarma | DESM, NCERT, New Delhi |
| Course Co-Coordinator / Co-PI | Dr. Mohd. Mamur Ali | CIET, NCERT, New Delhi |
| Subject Matter Expert (SME) | Mr. Rahul Sofat | Air Force Golden Jubilee <br> Institute, New Delhi |
| Review Team | Prof. Bhim Prakash Sarrah | Assam University, Tezpur |

Introduction: In this module, we will prove certain results or statements (including inequality) in terms of $n$. where $n$ is a positive integer using principle of mathematical induction.

## The principle of mathematical induction

Suppose there is a given statement $\mathrm{P}(\mathrm{n})$ involving the natural number n such that

1. The statement is true for $\mathrm{n}=1$, i.e., $\mathrm{P}(1)$ is true and
2. If the statement is true for $\mathrm{n}=\mathrm{k}$ (where k is some positive integer), then the statement is also true for $\mathrm{n}=\mathrm{k}+1$, i.e., truth of $\mathrm{P}(\mathrm{k})$ implies the truth of $\mathrm{P}(\mathrm{k}+1)$.

Then, $\mathrm{P}(\mathrm{n})$ is true for all natural number n .

## Note:

- In the above statement property (i) is simply a statement of fact. There may be instances when a statement is true for $n \geq r$, where $r$ is some positive integer other than 1 (say 2 or 3 etc.)

We shall verify the result for $\mathrm{n}=\mathrm{r}$ i.e.,in step 1 , we shall show $\mathrm{P}(\mathrm{r})$ is true.

- The property given in step (ii) is a conditional property. It does not assert that the given statement is true for $\mathrm{n}=\mathrm{k}$, but only that if it is true for $\mathrm{n}=\mathrm{k}$, then it is true for $\mathrm{n}=\mathrm{k}+1$. This step is also referred as inductive step.

Example-1 For all $\mathrm{n} \geq 1$, prove that

$$
1+2+3+\ldots+\frac{n(n+1)}{2}
$$

Solution: let the given statement be $\mathrm{P}(\mathrm{n})$, i.e.,
$\mathrm{P}(\mathrm{n}): \quad 1+2+3+\ldots+\frac{n(n+1)}{2}$

For $\mathrm{n}=1, \mathrm{P}(1): 1=1(1+1) / 2=1$, which is true

Assume that $\mathrm{P}(\mathrm{n})$ is true for some positive integer k , i.e.,
$\mathrm{P}(\mathrm{k}+): 1+2+3+\ldots \ldots+\mathrm{k}=\frac{k(k+1)}{2}$

We shall now prove that $P(k+1)$ is also true, i.e.
$P(k+1): 1+2+3+\ldots \ldots+k+(k+1)=k+1+1(k+1)$

$$
\begin{aligned}
\text { LHS }= & (1+2+3+\ldots .+\mathrm{k})+(\mathrm{k}+1) \\
& =\frac{k(k+1)}{2}+(k+1) \\
& =(\mathrm{k}+1)\left[\frac{R}{2}+1\right] \\
& =\frac{(R+1)(R+2)}{2} \\
& =\frac{(k+1)((k+1)+1)}{2} \\
& =\text { RHS }
\end{aligned}
$$

Thus $P(R+1)$ is true, whenever $P(k)$ is true. Hence, from the principle of mathematical induction, the statement $\mathrm{P}(\mathrm{n})$ is true for all natural number n

Example-2 Prove the following by using the principle of mathematical induction for all $\mathrm{n} \in \mathrm{N}: \quad a+a r+a r^{2}+\ldots+a r^{n-1}=\frac{a\left(r^{n}-1\right)}{r-1}$

Solution: let the given statement be $\mathrm{P}(\mathrm{n})$, i.e.,
$\mathrm{P}(\mathrm{n}): a+a r+a r^{2}+\ldots+a r^{n-1}=\frac{a\left(r^{n}-1\right)}{r-1}$
For $\mathrm{n}=1, \mathrm{P}(1): \mathrm{a}=\frac{a(r-1)}{(r-1)}=\mathrm{a}$, which is true
Assume that $\mathrm{P}(\mathrm{n})$ is true for some positive integer R, i.e.
$\mathrm{P}(\mathrm{n}): \quad a+a r+a r^{2}+\ldots+a r^{R-1}=\frac{a\left(r^{R}-1\right)}{r-1} \ldots$
We shall now prove that $\mathrm{P}(\mathrm{R}+1)$ is also true, i.e.

$$
\begin{aligned}
& \mathrm{P}(\mathrm{R}+1): a+a r+a r^{2}+\ldots+a r^{R-1}+a r^{R}=\frac{a\left(r^{R}-1\right)}{r-1} \\
& \begin{aligned}
\mathrm{LHS} & = \\
& \left(a+a r+a r^{2}+\ldots+a r^{R-1}\right)+a r^{R} \\
& =\frac{a\left(r^{R}-1\right)}{r-1}+a r^{R} \quad \text { (using 1) } \\
& =\frac{a r^{R}-a+a r^{R}(r-1)}{r-1} \\
& =\frac{a r^{R}-a+a r^{R+1}-a r^{R}}{r-1}
\end{aligned}
\end{aligned}
$$

$$
=\frac{a\left(r^{R+1}-1\right)}{r-1}=\text { RHS }
$$

Thus $P(R+1)$ is true, whenever $P(k)$ is true.
Hence from the principle of mathematical induction, the statement $P(n)$ is true for all natural numbers n.

Example-3 Using the principle of mathematical induction
Prove that: $\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+\ldots+\frac{1}{(2 n-1)(2 n+1)}=\frac{n}{2 n+1}$
Where n is any positive integer
Solution: we can write
P (n): $\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+\ldots+\frac{1}{(2 n-1)(2 n+1)}=\frac{n}{2 n+1}$
We note that $P(1): \frac{1}{1.3}=\frac{1}{2 \times 1+1}=\frac{1}{3}$, which is true
Thus $P(n)$ is true for $n=1$
Assume $P(n)$ is true for some natural number $R$,
i.e. $\mathrm{P}(\mathrm{R}): \quad \frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+\ldots+\frac{1}{(2 R-1)(2 R+1)}=\frac{R}{2 R+1}$
we need to prove $\mathrm{P}(\mathrm{R}+1)$ is true i.e.

$$
\begin{align*}
\mathrm{P}(\mathrm{R}+1) & : \frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+\ldots+\frac{1}{(2 R-1)(2 R+1)}+\frac{1}{(2 R+1)(2 R+3)}=\frac{R+1}{2(R+1)+1} .  \tag{2}\\
& =\left[\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+\ldots+\frac{1}{(2 R-1)(2 R+1)}\right]+\frac{1}{(2 R+1)(2 R+3)} \quad \text { (using 1) } \\
& =\frac{1}{2 R+1}\left[R+\frac{1}{(2 R+1)(2 R+3)}\right] \\
& =\frac{1}{2 R+1} \frac{R(2 R+3)+1}{2 R+3} \\
& =\frac{1}{2 R+1} \times \frac{2 R^{2}+3 R+1}{2 R+3} \\
& =\frac{1}{2 R+1} \times \frac{(R+1)(2 R+1)}{2 R+3}
\end{align*}
$$

$$
\begin{aligned}
& \quad=\frac{R+1}{2 R+3} \\
& =\frac{R+1}{(2 R+2)+1} \\
& =\frac{R+1}{(2 R+2)+1}=\text { RHS }
\end{aligned}
$$

Thus $P(R+1)$ is true whenever $P(R)$ is true.
Hence, by the principle of mathematical induction, $\mathrm{P}(\mathrm{n})$ is true for all natural number N
Example-4: Prove by the principle of Mathematical Induction

$$
1^{3}+2^{3}+3^{3}+\ldots+n^{3}=(1+2+3+\ldots+n)^{2}
$$

Solution: let the given statement be $\mathrm{P}(\mathrm{n})$, i.e.,
$\mathrm{P}(\mathrm{n}): 1^{3}+2^{3}+3^{3}+\ldots+n^{3}=(1+2+3+\ldots+n)^{2}$
For $n=1, P(1)$ : $\quad 1^{3}=1=1^{2}$, which is true
Assume that $\mathrm{P}(\mathrm{n})$ is true for some positive integer k , i.e.,
$\mathrm{P}(\mathrm{k}): 1^{3}+2^{3}+3^{3}+\ldots+k^{3}=(1+2+3+\ldots+k)^{2}$
We shall now prove that $\mathrm{P}(\mathrm{k}+1)$ is also true, i.e.,

$$
\begin{aligned}
& \mathrm{P}(\mathrm{k}+1): 1^{3}+2^{3}+3^{3}+\ldots+k^{3}+(k+1)^{3}=(1+2+3+\ldots+(k+1))^{2} \\
& \text { LHS } \left.=1^{3}+2^{3}+3^{3}+\ldots+k^{3}\right)+(k+1)^{3} \\
& =(1+2+3+\ldots+k)^{2}+(k+1)^{3} \\
& =\left[\frac{k(k+1)}{2}\right]^{2}+(k+1)^{3} \\
& =\frac{k^{2}(k+1)^{2}}{4}++(k+1)^{3} \\
& =(k+1)^{2}\left[\frac{k^{2}}{4}+k+1\right]
\end{aligned}
$$

$=(k+1)^{2}\left[\frac{k^{2}+4 k+4}{4}\right]$
$=\left[\frac{(k+1)^{2}(k+2)^{2}}{2}\right]^{2}$
$=(1+2+3+\ldots+(k+1))^{2}=$ RHS

Thus $\mathrm{P}(\mathrm{k}+1)$ is true, whenever $\mathrm{P}(\mathrm{k})$ is true.

Hence, from the principle of mathematical induction, the statement $\mathrm{P}(\mathrm{n})$ is true for all natural numbers $n$.

Example: 5 prove by the Principle of mathematical induction for all $n \in N$

$$
1.2+22^{2}+32^{3}+\ldots+n 2^{n}=(n-1) 2^{n+1}+2
$$

Solution: let the given statement be $\mathrm{P}(\mathrm{n})$, i.e.

$$
P(n): 1.2+22^{2}+32^{3}+\ldots+n 2^{n}=(n-1) 2^{n+1}+2
$$

For $\mathrm{n}=1, \mathrm{P}(1): 1.2=2=(1-1) 2^{2}+2=2$, which is true

Assume that $\mathrm{P}(\mathrm{n})$ is true for some positive integer $k$, i.e.,

$$
P(k): 1.2+22^{2}+32^{3}+\ldots+k 2^{k}=(k-1) 2^{k+1}+2 \ldots(1)
$$

We shall now prove that $\mathrm{P}(\mathrm{k}+1)$ is also true, i.e.,

$$
P(k+1): 1.2+22^{2}+32^{3}+\ldots+k 2^{k}+(k+1) 2^{k+1}=(k) 2^{k+2}+2 \ldots(2)
$$

LHS $=\left(1.2+22^{2}+32^{3}+\ldots+k 2^{k}\right)+(k+1) 2^{k+1}$
$=\left[(k-1) 2^{k+1}+2\right]+(k+1) 2^{k+1}$
$[$ Using $(1)]$
$=(k-1) 2^{k+1}+(k+1) 2^{k+1}+2$
$=(k-1+k+1) 2^{k+1}+2$
$=2 \mathrm{k} 2^{k+1}+2$
$=\mathrm{k} \quad 2^{k+2}+2$
=R H S

Thus $\mathrm{P}(\mathrm{k}+1)$ is true, whenever $\mathrm{P}(\mathrm{k})$ is true.
Hence from the principle of mathematical induction, the statement $\mathrm{P}(\mathrm{n})$ is true for all natural numbers $n$.

Example-6: prove by the principle of mathematical induction that

$$
7+77+777+\ldots+7777 \ldots 7=\frac{7}{81}\left(10^{n+1}-9 n-10\right)
$$

## For all $\mathrm{n} \in \mathrm{N}$

Solution: let the given statement be $\mathrm{P}(\mathrm{n})$, i.e.,
For $\mathrm{n}=1, \mathrm{P}(1): \quad \frac{7}{81}\left(10^{2}-9-10\right)=\frac{7}{81} \times 81=7 \quad$, which is true.

Assume that $\mathrm{P}(\mathrm{n})$ is true for some positive integer k , i.e.
$7+77+777+\ldots+7777 \ldots 7=\frac{7}{81}\left(10^{k+1}-9 k-10\right) \ldots(1)$
We shall now prove that $P(k+1)$ is also true, i.e.,

$$
\begin{aligned}
& \mathrm{P}(\mathrm{k}+1): 7+77+777+\ldots+7777 \ldots 7+77777 \ldots 7=\frac{7}{81}\left(10^{k+2}-9(k+1)-10\right) \ldots(2) \\
& \text { L H S }=(7+77+777+\ldots+7777 \ldots 7)+77777 \ldots 7 \\
& \left.=\frac{7}{81}\left(10^{k+1}-9 k-10\right)+77777 \ldots 7 \quad \text { (using } 1\right) \\
& =\frac{7}{81}\left(10^{k+1}-9 k-10\right)+\left(1+10+10^{2}+\ldots+10^{k}\right) \\
& =\frac{7}{81}\left(10^{k+1}-9 k-10\right)+7 \frac{\left(10^{k+1}-1\right)}{10-1} \\
& =\frac{7}{81}\left(10^{k+1}-9 k-10+9.10^{k+1}-9\right) \\
& =\frac{7}{81}\left(10^{k+2}-9(k+1)-10\right)=\text { R H S }
\end{aligned}
$$

Hence $P(k+1)$ is true, whenever $P(k)$ is true

Hence from the principle of mathematical induction the statement $\mathrm{P}(\mathrm{n})$ is true for all natural numbers $n$.

Example-7: Using principle of mathematical induction, prove that

$$
\cos \cos \alpha \cos \cos 2 \alpha \cos \cos 3 \alpha \cos \cos 4 \alpha \ldots \cos \cos \left(2^{n} \alpha\right)=\frac{\sin \sin \left(2^{n} \alpha\right)}{2^{n} \sin \sin \alpha}
$$

## For all $n \in N$

Solution: let the given statement be $\mathrm{P}(\mathrm{n})$, i.e.
$\mathrm{P}(\mathrm{n}): \cos \cos \alpha \cos \cos 2 \alpha \cos \cos 3 \alpha \cos \cos 4 \alpha \ldots \cos \cos \left(2^{n} \alpha\right)=\frac{\sin \sin \left(2^{n} \alpha\right)}{2^{n} \sin \sin \alpha}$
For $\mathrm{n}=1, \mathrm{P}(1): \quad \cos \cos \alpha=\frac{\sin \sin (2 \alpha)}{2 \sin \sin \alpha}=\frac{\mid \alpha) \cos \cos \alpha}{2 \sin \sin \alpha}=\cos \cos \alpha$,

Assume that $\mathrm{P}(\mathrm{n})$ is true for some positive integer k, i.e.
$\mathrm{P}(\mathrm{k}): \quad \cos \cos \alpha \cos \cos 2 \alpha \cos \cos 3 \alpha \cos \cos 4 \alpha \ldots \cos \cos \left(2^{k} \alpha\right)=\frac{\sin \sin \left(2^{k} \alpha\right)}{2^{k} \sin \sin \alpha} \ldots(1)$
Let us now prove that $P(k+1)$ is true, i.e.
P(k+1):
$\cos \cos \alpha \cos \cos 2 \alpha \cos \cos 3 \alpha \cos \cos 4 \alpha \ldots . \cos \cos \left(2^{k-1} \alpha\right) \cos \cos \left(2^{k} \alpha\right)=\frac{\sin \sin \left(2^{k+1} \alpha\right)}{2^{k+1} \sin \sin \alpha} \ldots .(2)$
L H S $=\left[\cos \cos \alpha \cos \cos 2 \alpha \cos \cos 3 \alpha \cos \cos 4 \alpha \ldots \cos \cos \left(2^{k-1} \alpha\right)\right] \cos \cos \left(2^{k} \alpha\right)$
$=\left[\frac{\sin \sin \left(2^{k} \alpha\right)}{2^{k} \sin \sin \alpha}\right] \cos \cos \left(2^{k} \alpha\right)$
$=\frac{2 \sin \sin \left(2^{k} \alpha\right) \cos \cos \left(2^{k} \alpha\right)}{2^{k+1} \sin \sin \alpha}$
$=\frac{\sin \sin \left(2^{k+1} \alpha\right)}{2^{k+1} \sin \sin \alpha}=$ R H S

Hence $P(k+1)$ is true, whenever $P(k)$ is true.

Hence from the principle of mathematical induction the statement $P(n)$ is true for all natural numbers n .

