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Introduction: In this module, we will prove certain results or statements (including inequality) in

terms of n. where n is a positive integer using principle of mathematical induction.

The principle of mathematical induction

Suppose there is a given statement P(n) involving the natural number n such that

1. The statement is true for n=1, i.e.,  P(1) is true and 
2. If the statement  is true for n = k(where k is some positive integer), then the statement is

also true for n = k+1, i.e., truth of P(k) implies the truth of P(k+1).

Then, P(n) is true for all natural number n.

Note:

 In the above statement property (i) is simply a statement of fact. There may be instances

when a statement is true for n ≥ r, where r is some positive integer other than 1 (say 2 or

3 etc.)

We shall verify the result for n = r i.e.,in step 1, we shall show P(r) is true.

 The property given in step (ii) is a conditional property. It does not assert that the given

statement is true for n = k, but only that if it is true for  n = k, then it is true for n = k+1.

This step is also referred as inductive step. 

Example-1 For all n≥1, prove that

1+2+3+….+
n (n+1 )

2

Solution: let the given statement be P(n), i.e., 

P (n): 1+2+3+….+
n (n+1 )

2

For n = 1, P (1): 1 = 1(1+1)/2 = 1, which is true

Assume that P (n) is true for some positive integer k, i.e., 

P (k+): 1+2+3+……+k =  
k (k+1 )

2
……. (1)

We shall now prove that P (k+1) is also true, i.e.

P (k+1): 1+2+3+……+k + (k+1) = k+1+1 (k+1 ) ………. (2)



LHS = (1+2+3+…. +k) + (k+1)

= 
k (k+1 )

2
+ (k+1 )  using (1)

= (k+1) [ R2 +1]
= 

(R+1 ) ( R+2 )

2

= 
(k+1 ) {(k+1 )+1}

2

= RHS

Thus P(R+1) is true, whenever P (k) is true. Hence, from the principle of mathematical induction,

the statement P(n) is true for all natural number n

Example-2 Prove  the  following  by  using  the  principle  of  mathematical

induction for all n ∈ N: a+ar+ar2
+…+arn−1

=
a (rn−1 )

r−1
 

Solution: let the given statement be P (n), i.e.,

P (n): a+ar+ar2
+…+arn−1

=
a (rn−1 )

r−1

For n = 1, P (1): a = 
a (r−1 )

(r−1 )
 = a , which is true

Assume that P (n) is true for some positive integer R, i.e.

P (n): a+ar+ar2
+…+arR− 1

=
a (rR−1 )

r −1
… (1) 

We shall now prove that P(R+1) is also true, i.e.

P(R+1): a+ar+ar2
+…+arR− 1

+arR
=

a (r R−1 )
r −1

… (2)

LHS = (a+ar+ar2
+…+arR−1 ) + ar R

= a (rR−1 )
r −1

 + ar R (using 1)

= 
arR−a+ar R (r−1 )

r −1

=  arR−a+ar R+1−arR

r −1



= a (rR+1 −1 )
r−1

 = RHS

Thus P (R+1) is true, whenever P (k) is true.

Hence from the principle of mathematical induction, the statement P (n) is true for all natural

numbers n.

Example-3 Using the principle of mathematical induction 

Prove that: 
1

1.3
+

1
3.5

+
1

5.7
+…+

1
(2n−1 ) (2n+1 )

=
n

2n+1

Where n is any positive integer

Solution: we can write

P (n): 
1

1.3
+

1
3.5

+
1

5.7
+…+

1
(2n−1 ) (2n+1 )

=
n

2n+1

We note that P (1): 
1

1.3
=

1
2×1+1

=
1
3

, which is true

Thus P (n) is true for n = 1 

Assume P (n) is true for some natural number R,

i.e. P(R) : 
1

1.3
+

1
3.5

+
1

5.7
+…+

1
(2R−1 ) (2 R+1 )

=
R

2R+1 …(1) 

we need to prove P(R+1) is true i.e. 

P(R+1): 
1

1.3
+

1
3.5

+
1

5.7
+…+

1
(2R−1 ) (2 R+1 )

+
1

(2 R+1 ) (2R+3 )
=

R+1
2 ( R+1 )+1

…(2)

LHS = [ 1
1.3

+
1

3.5
+

1
5.7

+…+
1

(2R−1 ) (2R+1 ) ] +
1

(2 R+1 ) (2R+3 )
 (using 1)

= 
R

2 R+1
 + 

1
(2 R+1 ) (2R+3 )

=  
1

2 R+1 [R+
1

(2 R+3 ) ]
= 

1
2 R+1

R (2R+3 )+1
2R+3

= 1
2 R+1

×
2 R2

+3 R+1
2R+3

=
1

2 R+1
×

( R+1 ) (2R+1 )

2R+3



= 
R+1

2 R+3

= 
R+1

(2 R+2 )+1

=
R+1

(2 R+2 )+1
 = RHS

Thus P(R+1) is true whenever P(R) is true.

Hence, by the principle of mathematical induction, P(n) is true for all natural number N

Example-4:  Prove by the principle of Mathematical Induction

13
+23

+33
+…+n3

=(1+2+3+…+n )2

Solution: let the given statement be P(n), i.e., 

P(n): 13
+23

+33
+…+n3

=(1+2+3+…+n )2

For n=1, P(1): 13 =1=12, which is true 

Assume that P(n) is true for some positive integer k, i.e., 

P(k): 13
+23

+33
+…+k 3

=(1+2+3+…+k )2 … (1)

We shall now prove that P(k+1) is also true, i.e.,

P(k+1): 13
+23

+33
+…+k 3

+ (k+1 )
3
=(1+2+3+…+(k+1 ) )2 … (2)

LHS = 13
+23

+33
+…+k 3 )+ (k+1 )3

= (1+2+3+…+k )2 + (k+1 )3

= [ k (k+1 )

2 ]
2

+ (k+1 )3

= 
k2 ( k+1 )2

4
+ + (k+1 )3

= (k+1 )2[ k
2

4
+k+1]



= (k+1 )2[ k
2+4 k+4

4 ]

= [ (k+1 )
2

(k+2 )
2

2 ]
2

= (1+2+3+…+ (k+1 ) )2 = RHS

Thus P(k+1) is true, whenever P(k) is true.

Hence, from the principle of mathematical induction, the statement P(n) is true for all natural

numbers n.

Example: 5 prove by the Principle of mathematical induction for all n∈N

1.2+222
+3 23

+…+n2n
=(n−1 ) 2n+1

+2

Solution: let the given statement be P(n), i.e. 

P (n ):1.2+222
+323

+…+n2n
=( n−1 )2n+1

+2

For n = 1, P(1) : 1.2 = 2 = (1-1) 22 +2 = 2, which is true

Assume that P(n) is true for some positive integer k, i.e.,

P (k ):1.2+222
+323

+…+k 2k
=(k −1 ) 2k+1

+2… (1 )

We shall now prove that P(k+1) is also true, i.e.,

P (k+1 ):1.2+2 22
+3 23

+…+k 2k
+(k+1 )2k +1

=(k )2k +2
+2… (2 )

L H S = (1.2+222
+323

+…+k 2k )+(k+1 ) 2k+1

= [ (k −1 ) 2k+1
+2 ] + (k+1 ) 2k+1 [Using (1 ) ]

= (k −1 ) 2k+1 + (k+1 ) 2k+1 +2

= (k −1+k+1 )2k +1
+2

= 2k 2k+1 + 2

= k 2k+2 + 2



=R H S

Thus P (k+1) is true, whenever P(k) is true.

Hence from the principle of mathematical induction, the statement P(n) is true for all natural

numbers n.

Example-6: prove by the principle of mathematical induction that

7+77+777+…+ 7777…7 = 
7
81

(10n+ 1−9n−10 )

For all n ∈ N

Solution: let the given statement be P (n), i.e.,

For n = 1, P(1): 
7
81

(102−9−10 )= 7
81

×81=7 , which is true.

Assume that P (n) is true for some positive integer k,  i.e.

7+77+777+…+ 7777…7 = 
7
81

(10k +1−9k−10 )… (1 )

We shall now prove that P(k+1) is also true, i.e.,

P (k+1): 7+77+777+…+ 7777…7 + 77777…7 = 
7
81

(10k+2−9 (k+1 ) −10)… (2 )

L H S = (7+77+777+…+ 7777…7) + 77777…7

= 
7
81

(10k +1−9k−10 )  + 77777…7 (using 1)

= 
7
81

(10k +1−9k−10 )  + (1+10+102
+…+10k )

= 
7
81

(10k +1−9k−10 )  + 7
( 10k+1 −1 )

10−1

= 
7
81

(10k +1−9k−10+9. 10k+ 1−9 )

= 
7
81

(10k+2−9 (k+1 ) −10)  = R H S



Hence P (k+1) is true, whenever P (k) is true

Hence from the principle of mathematical induction the statement P(n) is  true for all  natural

numbers n. 

Example-7: Using principle of mathematical induction, prove that 

coscos α coscos2α coscos3α cos cos4 α….coscos (2nα )=
sin sin (2nα )

2n sin sinα

For all n ∈ N

Solution: let the given statement be P (n), i.e.

P (n): coscos α coscos2α coscos3α cos cos4 α….coscos (2nα )=
sin sin (2nα )

2n sin sin α

For n = 1, P (1): coscos α  = 
sinsin (2α )

2 sin sinα
 = 

(α ) coscos α
2sin sin α

 = coscos α ,

Assume that P (n) is true for some positive integer k, i.e.

P (k): coscos α coscos2α coscos3α cos cos4 α….coscos (2kα )=
sin sin (2k α )

2k sin sin α
…. (1 )

Let us now prove that P (k+1) is true, i.e.

P (k + 1):

coscos α coscos2α coscos3α cos cos4 α….coscos (2k− 1 α ) coscos ( 2k α )=
sin sin (2k +1 α )

2k+1 sinsin α
…. (2 )

L H S = [coscos α coscos 2α coscos3α coscos4 α….coscos ( 2k −1 α ) ]cos cos (2k α )

= [ sin sin (2k α )

2k sin sin α ]cos cos (2k α )

= 
2 sin sin (2k α ) coscos (2k α )

2k +1sin sin α

= 
sinsin (2k+1 α )

2k+1 sin sin α
 = R H S



Hence P (k+1) is true, whenever P (k) is true.

Hence from the principle of mathematical induction the statement P (n) is true for all natural

numbers n. 


