1. Details of Module and its structure

Module Detail		
Subject Name	Mathematics	
Course Name	Mathematics (Class XI, Semester - 1)	
Module Name/Title	Trigonometry: Part 8	
Module Id	kemh_10308	
Pre-requisites	Knowledge about Trigonometric Functions.	
Objectives	After going through this lesson, the learners will be able to understand the following: 1.Introduction 2. Sine Rule 3. Cosine Rule 4.Summary	
Keywords	Acute angled triangle, Obtuse angled triangle, Right angled triangle, sine rule, cosine rule.	

2. Development Team

Role	Name	Affiliation
National MOOC Coordinator (NMC)	Prof. Amarendra P. Behera	CIET, NCERT, New Delhi
Program Coordinator	Dr. Indu Kumar	CIET, NCERT, New Delhi
Course Coordinator (CC) / PI	Prof. Til Prasad Sarma	DESM, NCERT, New Delhi
Course Co-Coordinator	Ms. Anjali Khurana	CIET, NCERT, New Delhi
Subject Matter Expert (SME)	Ms. Kiran Seth	HOD (Math), Amity International School, Saket, New Delhi.
Review Team	Dr. S.K.S. Gautum	Retd. Professor DESM, NCERT, New Delhi

TABLE OF CONTENTS

- **1. Introduction**
- 2. Sine Rule
- 3. Cosine Rule
- 4. Summary

1. Introduction

In this module we will discuss sine and cosine function formulae their derivations and their application.

2. Sine Rule

The sine rule states that the lengths of the sides of a triangle are proportional to the sines of

angles opposite to them i.e. in $\triangle ABC$, $\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$

Proof: Three cases arise

Case (i) When \triangle ABC is acute angled triangle

Let a = BC, b = AC and c = AB

From vertex A, draw AD⊥BC

In
$$\triangle ABD$$
, $\frac{AD}{AB} = \sin B \Rightarrow AD = c \sin B$ (i)

In
$$\triangle ACD$$
, $\frac{AD}{AC} = \sin C \Rightarrow AD = b \sin C$ (ii)

From (i) and (ii) we get, $c \sin B = b \sin C$

or
$$\frac{b}{\sin B} = \frac{c}{\sin C}$$
(A)

Similarly, by drawing BELAC, we can prove that

$$\frac{a}{\sin A} = \frac{c}{\sin C} \qquad \dots \dots (B)$$

From (A) and (B), we see that

$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$$

Case (ii) When \triangle ABC is obtuse angled triangle.

From vertex A, draw $AD \perp BC$ produced.

In Δ ABC,

$$\frac{AD}{AB} = \sin(180^{\circ} - B)$$
$$\Rightarrow \frac{AD}{AB} = \sin B$$
$$\Rightarrow AD = c \sin B \dots (i)$$

Similarly, in $\triangle ACD$, $\frac{AD}{AC} = \sin C$

or $AD = b \sin C$ (ii)

From (i) and (ii), we get

 $c \sin B = b \sin C$ or $\frac{b}{\sin B} = \frac{c}{\sin C}$

Similarly, by drawing $BE \perp AC$, we can show that

$$\frac{a}{\sin A} = \frac{c}{\sin C}$$

Hence,
$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$$

Case (iii) When Δ ABC is right angled triangle.

In Δ ABC, right angled at B.

(i)
$$\frac{AB}{AC} = \sin C$$
 or $\frac{c}{b} = \sin C \implies b = \frac{c}{\sin C}$

(ii)
$$\frac{BC}{AC} = \sin A$$
 or $\frac{a}{b} = \sin A \Rightarrow b = \frac{a}{\sin A}$

(iii)
$$\sin B = \sin \frac{\pi}{2} = 1 \implies \frac{b}{\sin B} = b$$

From (i), (ii) and (iii), we get

$$b = \frac{a}{\sin A} = \frac{c}{\sin c} = \frac{b}{\sin B}$$
$$\Rightarrow \frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$$

... From all the three cases, we see that

$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$$

Note : (i)
$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C} = k$$

 $\Rightarrow a = k \sin A, b = k \sin B, c = k \sin C$

(ii)
$$\frac{\sin A}{a} = \frac{\sin B}{b} = \frac{\sin C}{c} = \lambda$$

 $\Rightarrow \sin A = a\lambda, \sin B = b\lambda, \sin C = c\lambda$

Example 1 : In $\triangle ABC$, if a = 2, b = 3 and $\sin A = \frac{2}{3}$, find $\angle B$.

Solution : We know that
$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$$

Here $a = 2$, $b = 3$ and $\sin A = \frac{2}{3}$
 $\frac{2}{\frac{2}{3}} = \frac{3}{\sin B} \implies \sin B = 1 \implies B = \frac{\pi}{2}$ or 90°

Example 2: In any triangle, prove that

(i)
$$\frac{a^2 - c^2}{b^2} = \frac{\sin (A-C)}{\sin (A+C)}$$
 (ii) $b \cos B + c \cos C = a \cos (B-C)$

Solution:

(i) LHS =
$$\frac{a^2 - c^2}{b^2} = \frac{k^2 \sin^2 A - k^2 \sin^2 C}{k^2 \sin^2 B}$$
 [by sine formula]

$$= \frac{\sin^{2} A - \sin^{2} C}{\sin^{2} B} = \frac{\sin (A+C) \cdot \sin (A-C)}{\sin^{2} [180^{\circ} - (A+C)]}$$

$$=\frac{\sin (A+C) \cdot \sin (A-C)}{\sin (A+C) \cdot \sin (A+C)} = \frac{\sin (A-C)}{\sin (A+C)} = RHS$$

(ii) LHS = b cos B + c cos C
= k [sin B cos B + sin C cos C]
=
$$\frac{k}{2}$$
 [sin 2 B + sin 2 C]
= $\frac{k}{2}$ [2 sin (B+C) cos (B-C)]
= k [sin (180°-A) cos (B-C)]
= k sin A cos (B-C)
= a cos (B-C) = RHS

3. Cosine Rule

In any triangle ABC, we have

(i)
$$a^2 = b^2 + c^2 - 2bc \cos A$$
 or $\cos A = \frac{b^2 + c^2 - a^2}{2bc}$

(ii)
$$b^2 = a^2 + c^2 - 2ac \cos B \text{ or } \cos B = \frac{a^2 + c^2 - b^2}{2ac}$$

(ii)
$$c^2 = a^2 + b^2 - 2ab \cos C \text{ or } \cos C = \frac{a^2 + b^2 - c^2}{2ab}$$

Proof : Three cases arise :

Case I : When the $\triangle ABC$ is an acute angled triangle. From vertex A, draw $AD \perp BC$

In
$$\triangle ABD$$
, $\cos B = \frac{BD}{c} \implies BD = c \cos B$

In
$$\triangle ACD$$
, $\cos C = \frac{CD}{b} \implies CD = b \cos C$

Also,
$$AC^2 = CD^2 + AD^2$$

 $= AD^2 + (BC - BD)^2$
 $= BC^2 + (AD^2 + BD^2) - 2BC.BD$
 $AC^2 = BC^2 + AB^2 - 2BC.BD$
or, $b^2 = a^2 + c^2 - 2a.c \cos B$
or, $\cos B = \frac{a^2 + c^2 - b^2}{2 ac}$

Case II : When $\triangle ABC$ is an obtuse angled triangle. From vertex A, draw AD $\perp CB$ produced In $\triangle ABD$,

$$\frac{BD}{c} = \cos (180^{\circ} - B) = -\cos B$$
$$\Rightarrow BD = -c \cos B$$
Also, AC² = AD² + CD²

$$= AD^{2} + (BC + BD)^{2}$$
$$= AD^{2} + BD^{2} + BC^{2} + 2BC.BD$$
$$AC^{2} = AB^{2} + BC^{2} + 2BC.BD$$
or b² = c² + a² + 2a (-c cos B)
or cos B =
$$\frac{c^{2} + a^{2} - b^{2}}{2ac}$$
When $\triangle ABC$ is a right triangle.

 $b^{2} = c^{2} + a^{2}$ As $B = \frac{\pi}{2} \implies \cos B = 0$ $\therefore b^{2} = c^{2} + a^{2} - 2ac \cos B \qquad [\because \cos B = 0]$ $\implies \cos B = \frac{c^{2} + a^{2} - b^{2}}{2ac}$

$$c$$
 b B a C

Thus, in all the three cases $\cos B = \frac{c^2 + a^2 - b^2}{2ac}$

By following the same procedure, we can prove that

 $\cos A = \frac{b^2 + c^2 - a^2}{2bc}$ and $\cos C = \frac{a^2 + b^2 - c^2}{2ab}$

Example 3:

Case III :

In a $\triangle ABC$, prove that a (b cos C - c cos B) = b² - c²

Solution:

LHS : $a (b \cos C - c \cos B)$

$$= ab \left[\frac{a^2 + b^2 - c^2}{2ab} \right] - ac \left[\frac{a^2 + c^2 - b^2}{2ac} \right]$$

$$= \frac{1}{2} \left[a^{2} + b^{2} - c^{2} - a^{2} - c^{2} + b^{2} \right]$$
$$= \frac{1}{2} \left[2b^{2} - 2c^{2} \right] = b^{2} - c^{2} = RHS$$

Example 4:

In a
$$\triangle$$
 ABC, prove that $\frac{c \cdot b \cos A}{b \cdot c \cos A} = \frac{\cos B}{\cos C}$

Solution:

LHS =
$$\frac{c-b \cos A}{b-c \cos A}$$

= $\frac{c-b \frac{(b^2+c^2-a^2)}{2bc}}{b-c \frac{(b^2+c^2-a^2)}{2bc}} = \frac{b}{c} \left[\frac{c^2+a^2-b^2}{b^2+a^2-c^2} \right]$
RHS = $\frac{\cos B}{\cos C} = \frac{\cancel{2} \cancel{a} b (a^2+c^2-b^2)}{\cancel{2} \cancel{a} c (a^2+b^2-c^2)} = \frac{b}{c} \left[\frac{c^2+a^2-b^2}{a^2+b^2-c^2} \right]$

= LHS

Example 5 :

In any \triangle ABC , prove that

2 (bc cosA + ca cos B + ab cos C) = $a^2 + b^2 + c^2$

Solution:

LHS =
$$2\left\{bc \; \frac{\left(b^2 + c^2 - a^2\right)}{2bc} + ca \; \frac{a^2 + c^2 - b^2}{2ac} + ab \; \frac{a^2 + b^2 - c^2}{2ab}\right\}$$

= $b^2 + c^2 - a^2 + a^2 + a^2 + b^2 - b^2 + a^2 + b^2 - a^2$
= $a^2 + b^2 + c^2 = RHS$

Example 6:

In any $\triangle ABC$, prove that

$$\frac{b^2 - c^2}{a^2} \cdot \sin 2A + \frac{c^2 - a^2}{b^2} \cdot \sin 2B + \frac{a^2 - b^2}{c^2} \cdot \sin 2C = 0$$

Solution:

$$LHS = \frac{b^{2} - c^{2}}{a^{2}} \cdot 2 \text{ (ka)} \left[\frac{b^{2} + c^{2} - a^{2}}{2bc} \right] + \frac{c^{2} - a^{2}}{b^{2}} \cdot 2 \text{ (kb)} \left[\frac{a^{2} + c^{2} - b^{2}}{2ac} \right] + \frac{a^{2} - b^{2}}{c^{2}} \cdot 2 \text{ (kc)} \left[\frac{a^{2} + b^{2} - c^{2}}{2ab} \right]$$
$$= \frac{k}{abc} \left[(b^{2} - c^{2})(b^{2} + c^{2}) - a^{2}(b^{2} - c^{2}) + (c^{2} - a^{2})(c^{2} + a^{2}) - b^{2}(c^{2} - a^{2}) + (a^{2} + b^{2})(a^{2} - b^{2}) - c^{2}(a^{2} - b^{2}) \right]$$
$$= \frac{k}{abc} \left[b^{a'} - c^{a'} - a^{2}b^{z'} + a^{z'}c^{2} + c^{a'} - a^{a'} - b^{z'}c^{z'} + a^{z'}b^{z'} + a^{z'}c^{2} + b^{2}c^{z'} \right] = 0 = RHS$$

4. Summary

In this module sine and cosine rule's derivations were taken. These rules were applied in solving various problems.