1. Details of Module and its structure

Module Detail	Mathematics			
Subject Name	Mathematics (Class XI, Semester - 1)			
Course Name	Trigonometry: Part 8			
kemh_10308		\quad	Module Name/Title	Knowledge about Trigonometric Functions.
:---	:---			
Module Id	After going through this lesson, the learners will be able to understand the following: 1.Introduction Pre-requisites Objectives 2. Sine Rule 3. Cosine Rule 4.Summary			
Keywords	Acute angled triangle, Obtuse angled triangle, Right angled triangle, sine rule, cosine rule.			

2. Development Team

Role	Name	Affiliation
National MOOC Coordinator (NMC)	Prof. Amarendra P. Behera	CIET, NCERT, New Delhi
Program Coordinator	Dr. Indu Kumar	CIET, NCERT, New Delhi
Course Coordinator (CC) / PI	Prof. Til Prasad Sarma	DESM, NCERT, New Delhi
Course Co-Coordinator	Ms. Anjali Khurana	CIET, NCERT, New Delhi
Subject Matter Expert (SME)	Ms. Kiran Seth	HOD (Math), Amity International School, Saket, New Delhi.
Review Team	Dr. S.K.S. Gautum	Retd. Professor DESM, NCERT, New Delhi

TABLE OF CONTENTS

1. Introduction

2. Sine Rule
3. Cosine Rule

4. Summary

1. Introduction

In this module we will discuss sine and cosine function formulae their derivations and their application.

2. Sine Rule

The sine rule states that the lengths of the sides of a triangle are proportional to the sines of angles opposite to them i.e. in $\triangle \mathrm{ABC}, \frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}$

Proof: Three cases arise
Case (i) When $\Delta \mathrm{ABC}$ is acute angled triangle

Let $\mathrm{a}=\mathrm{BC}, \mathrm{b}=\mathrm{AC}$ and $\mathrm{c}=\mathrm{AB}$
From vertex A, draw $A D \perp B C$
In $\triangle A B D, \frac{A D}{A B}=\sin B \Rightarrow A D=c \sin B$

In $\triangle A C D, \frac{A D}{A C}=\sin C \Rightarrow A D=b \sin C$
From (i) and (ii) we get, $\mathrm{c} \sin \mathrm{B}=\mathrm{b} \sin \mathrm{C}$

$$
\begin{equation*}
\text { or } \frac{b}{\sin B}=\frac{c}{\sin C} \tag{A}
\end{equation*}
$$

Similarly, by drawing $\mathrm{BE} \perp \mathrm{AC}$, we can prove that

$$
\begin{equation*}
\frac{a}{\sin A}=\frac{c}{\sin C} \tag{B}
\end{equation*}
$$

From (A) and (B), we see that

$$
\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}
$$

Case (ii) When $\Delta \mathrm{ABC}$ is obtuse angled triangle.

From vertex A, draw $A D \perp B C$ produced.
In $\Delta \mathrm{ABC}$,
$\frac{A D}{A B}=\sin \left(180^{\circ}-B\right)$
$\Rightarrow \frac{A D}{A B}=\sin B$
$\Rightarrow A D=c \sin B \ldots \ldots . .(i)$

Similarly, in $\triangle A C D, \frac{A D}{A C}=\sin C$
or $\mathrm{AD}=\mathrm{b} \sin \mathrm{C}$
From (i) and (ii), we get
$c \sin B=b \sin C$ or $\frac{b}{\sin B}=\frac{c}{\sin C}$

Similarly, by drawing $\mathrm{BE} \perp \mathrm{AC}$, we can show that
$\frac{a}{\sin \mathrm{~A}}=\frac{\mathrm{c}}{\sin \mathrm{C}}$

Hence, $\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}$

Case (iii) When $\Delta \mathrm{ABC}$ is right angled triangle.

In $\Delta \mathrm{ABC}$, right angled at B .

(i) $\frac{\mathrm{AB}}{\mathrm{AC}}=\sin \mathrm{C}$ or $\frac{\mathrm{c}}{\mathrm{b}}=\sin \mathrm{C} \Rightarrow \mathrm{b}=\frac{\mathrm{c}}{\sin \mathrm{C}}$
(ii) $\frac{\mathrm{BC}}{\mathrm{AC}}=\sin \mathrm{A}$ or $\frac{\mathrm{a}}{\mathrm{b}}=\sin \mathrm{A} \Rightarrow \mathrm{b}=\frac{\mathrm{a}}{\sin \mathrm{A}}$
(iii) $\sin \mathrm{B}=\sin \frac{\pi}{2}=1 \Rightarrow \frac{\mathrm{~b}}{\sin \mathrm{~B}}=\mathrm{b}$

From (i), (ii) and (iii), we get

$$
\begin{aligned}
& b=\frac{a}{\sin A}=\frac{c}{\sin c}=\frac{b}{\sin B} \\
& \Rightarrow \frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}
\end{aligned}
$$

\therefore From all the three cases, we see that

$$
\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}
$$

Note: (i) $\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}=k$

$$
\Rightarrow \mathrm{a}=\mathrm{k} \sin \mathrm{~A}, \mathrm{~b}=\mathrm{k} \sin \mathrm{~B}, \mathrm{c}=\mathrm{k} \sin \mathrm{C}
$$

(ii) $\frac{\sin \mathrm{A}}{\mathrm{a}}=\frac{\sin \mathrm{B}}{\mathrm{b}}=\frac{\sin \mathrm{C}}{\mathrm{c}}=\lambda$
$\Rightarrow \sin \mathrm{A}=\mathrm{a} \lambda, \sin \mathrm{B}=\mathrm{b} \lambda, \sin \mathrm{C}=\mathrm{c} \lambda$
Example 1: In $\triangle \mathrm{ABC}$, if $\mathrm{a}=2, \mathrm{~b}=3$ and $\sin \mathrm{A}=\frac{2}{3}$, find $\angle \mathrm{B}$.
Solution : We know that $\frac{a}{\sin \mathrm{~A}}=\frac{\mathrm{b}}{\sin \mathrm{B}}=\frac{\mathrm{c}}{\sin \mathrm{C}}$

$$
\begin{aligned}
& \text { Here } \mathrm{a}=2, \mathrm{~b}=3 \text { and } \sin \mathrm{A}=\frac{2}{3} \\
& \frac{2}{\frac{2}{3}}=\frac{3}{\sin \mathrm{~B}} \Rightarrow \sin \mathrm{~B}=1 \Rightarrow \mathrm{~B}=\frac{\pi}{2} \text { or } 90^{\circ}
\end{aligned}
$$

Example 2: In any triangle, prove that
(i) $\frac{a^{2}-c^{2}}{b^{2}}=\frac{\sin (A-C)}{\sin (A+C)}$
(ii) $\mathrm{b} \cos \mathrm{B}+\mathrm{c} \cos \mathrm{C}=\mathrm{a} \cos (\mathrm{B}-\mathrm{C})$

Solution:

(i) LHS $=\frac{a^{2}-c^{2}}{b^{2}}=\frac{k^{2} \sin ^{2} A-k^{2} \sin ^{2} C}{k^{2} \sin ^{2} B}$ [by sine formula]

$$
=\frac{\sin ^{2} A-\sin ^{2} C}{\sin ^{2} B}=\frac{\sin (A+C) \cdot \sin (A-C)}{\sin ^{2}\left[180^{\circ}-(A+C)\right]}
$$

$$
=\frac{\sin (A+C) \cdot \sin (A-C)}{\sin (A+C) \cdot \sin (A+C)}=\frac{\sin (A-C)}{\sin (A+C)}=\text { RHS }
$$

(ii) LHS $=\mathrm{b} \cos \mathrm{B}+\mathrm{c} \cos \mathrm{C}$

$$
=\mathrm{k}[\sin \mathrm{~B} \cos \mathrm{~B}+\sin \mathrm{C} \cos \mathrm{C}]
$$

$$
=\frac{\mathrm{k}}{2}[\sin 2 \mathrm{~B}+\sin 2 \mathrm{C}]
$$

$$
=\frac{\mathrm{k}}{2}[2 \sin (\mathrm{~B}+\mathrm{C}) \cos (\mathrm{B}-\mathrm{C})]
$$

$$
=\mathrm{k}\left[\sin \left(180^{\circ}-\mathrm{A}\right) \cos (\mathrm{B}-\mathrm{C})\right]
$$

$$
=\mathrm{k} \sin \mathrm{~A} \cos (\mathrm{~B}-\mathrm{C})
$$

$$
=a \cos (B-C)=R H S
$$

3. Cosine Rule

In any triangle ABC , we have
(i) $a^{2}=b^{2}+c^{2}-2 b c \cos A$ or $\cos A=\frac{b^{2}+c^{2}-a^{2}}{2 b c}$
(ii) $b^{2}=a^{2}+c^{2}-2 a c \cos B$ or $\cos B=\frac{a^{2}+c^{2}-b^{2}}{2 a c}$
(ii) $c^{2}=a^{2}+b^{2}-2 a b \cos C$ or $\cos C=\frac{a^{2}+b^{2}-c^{2}}{2 a b}$

Proof : Three cases arise :
Case I : When the $\triangle \mathrm{ABC}$ is an acute angled triangle.
From vertex A, draw $A D \perp B C$
In $\triangle A B D, \cos B=\frac{B D}{c} \Rightarrow B D=c \cos B$
In $\triangle A C D, \cos C=\frac{C D}{b} \Rightarrow C D=b \cos C$

Also, $\quad \mathrm{AC}^{2}=\mathrm{CD}^{2}+\mathrm{AD}^{2}$

$$
\begin{aligned}
& =\mathrm{AD}^{2}+(\mathrm{BC}-\mathrm{BD})^{2} \\
& =\mathrm{BC}^{2}+\left(\mathrm{AD}^{2}+\mathrm{BD}^{2}\right)-2 \mathrm{BC} \cdot \mathrm{BD}
\end{aligned}
$$

$$
\mathrm{AC}^{2}=\mathrm{BC}^{2}+\mathrm{AB}^{2}-2 \mathrm{BC} \cdot \mathrm{BD}
$$

$$
\text { or, } b^{2}=a^{2}+c^{2}-2 a \cdot c \cos B
$$

or, $\cos B=\frac{\mathrm{a}^{2}+\mathrm{c}^{2}-\mathrm{b}^{2}}{2 \mathrm{ac}}$
Case II : When $\triangle \mathrm{ABC}$ is an obtuse angled triangle.
From vertex A , draw $\mathrm{AD} \perp \mathrm{CB}$ produced
In $\triangle \mathrm{ABD}$,

$\frac{\mathrm{BD}}{\mathrm{c}}=\cos \left(180^{\circ}-\mathrm{B}\right)=-\cos \mathrm{B}$
$\Rightarrow \mathrm{BD}=-\mathrm{c} \cos \mathrm{B}$
Also, $\mathrm{AC}^{2}=\mathrm{AD}^{2}+\mathrm{CD}^{2}$

$$
\begin{aligned}
& =\mathrm{AD}^{2}+(\mathrm{BC}+\mathrm{BD})^{2} \\
& =\mathrm{AD}^{2}+\mathrm{BD}^{2}+\mathrm{BC}^{2}+2 \mathrm{BC} \cdot \mathrm{BD} \\
\mathrm{AC}^{2} & =\mathrm{AB}^{2}+\mathrm{BC}^{2}+2 \mathrm{BC} \cdot \mathrm{BD} \\
\text { or } \mathrm{b}^{2} & =\mathrm{c}^{2}+\mathrm{a}^{2}+2 \mathrm{a}(-\mathrm{c} \cos \mathrm{~B}) \\
\text { or } \cos \mathrm{B} & =\frac{\mathrm{c}^{2}+\mathrm{a}^{2}-\mathrm{b}^{2}}{2 \mathrm{ac}}
\end{aligned}
$$

Case III : When $\triangle \mathrm{ABC}$ is a right triangle.

$$
\begin{aligned}
& b^{2}=c^{2}+a^{2} \\
& \text { As } B=\frac{\pi}{2} \Rightarrow \cos B=0 \\
& \therefore b^{2}=c^{2}+a^{2}-2 a c \cos B \quad[\because \cos B=0] \\
& \Rightarrow \cos B=\frac{c^{2}+a^{2}-b^{2}}{2 a c}
\end{aligned}
$$

Thus, in all the three cases $\cos B=\frac{c^{2}+a^{2}-b^{2}}{2 a c}$
By following the same procedure, we can prove that

$$
\cos A=\frac{b^{2}+c^{2}-a^{2}}{2 b c} \text { and } \cos C=\frac{a^{2}+b^{2}-c^{2}}{2 a b}
$$

Example 3:

In a $\triangle A B C$, prove that a $(b \cos C-c \cos B)=b^{2}-c^{2}$
Solution:
LHS : $a(b \cos C-c \cos B)$
$=a b\left[\frac{a^{2}+b^{2}-c^{2}}{2 a b}\right]-a c\left[\frac{a^{2}+c^{2}-b^{2}}{2 a c}\right]$

$$
\begin{aligned}
& =\frac{1}{2}\left[\not a^{2}+b^{2}-c^{2}-\not a^{2}-c^{2}+b^{2}\right] \\
& =\frac{1}{2}\left[2 b^{2}-2 c^{2}\right]=b^{2}-c^{2}=\text { RHS }
\end{aligned}
$$

Example 4:

In a $\triangle A B C$, prove that $\frac{c-b \cos A}{b-c \cos A}=\frac{\cos B}{\cos C}$
Solution:

$$
\begin{aligned}
& \text { LHS }=\frac{c-b \cos A}{b-c \cos A} \\
& =\frac{c-b \frac{\left(b^{2}+c^{2}-a^{2}\right)}{2 b c}}{b-c \frac{\left(b^{2}+c^{2}-a^{2}\right)}{2 b c}}=\frac{b}{c}\left[\frac{c^{2}+a^{2}-b^{2}}{b^{2}+a^{2}-c^{2}}\right]
\end{aligned}
$$

$$
\begin{aligned}
\text { RHS } & =\frac{\cos B}{\cos C}=\frac{\not 2 a b\left(a^{2}+c^{2}-b^{2}\right)}{\not 2 \not 2 c\left(a^{2}+b^{2}-c^{2}\right)}=\frac{b}{c}\left[\frac{c^{2}+a^{2}-b^{2}}{a^{2}+b^{2}-c^{2}}\right] \\
& =\text { LHS }
\end{aligned}
$$

Example 5 :

In any $\triangle \mathrm{ABC}$, prove that
$2(b c \cos A+c a \cos B+a b \cos C)=a^{2}+b^{2}+c^{2}$

Solution:

$$
\begin{aligned}
& \text { LHS }=2\left\{b c \frac{\left(b^{2}+c^{2}-a^{2}\right)}{2 b c}+c a \frac{a^{2}+c^{2}-b^{2}}{2 a c}+a b \frac{a^{2}+b^{2}-c^{2}}{2 a b}\right\} \\
& =\mathrm{b}^{2}+\mathrm{c}^{2}-\not a^{2}+\not a^{2}+\not \partial^{2}-\not \square^{2}+\mathrm{a}^{2}+\not \partial^{2}-\not \partial^{2} \\
& =a^{2}+b^{2}+c^{2}=\text { RHS }
\end{aligned}
$$

Example 6:

In any $\triangle \mathrm{ABC}$, prove that

$$
\frac{\mathrm{b}^{2}-\mathrm{c}^{2}}{\mathrm{a}^{2}} \cdot \sin 2 \mathrm{~A}+\frac{\mathrm{c}^{2}-\mathrm{a}^{2}}{\mathrm{~b}^{2}} \cdot \sin 2 \mathrm{~B}+\frac{\mathrm{a}^{2}-\mathrm{b}^{2}}{\mathrm{c}^{2}} \cdot \sin 2 \mathrm{C}=0
$$

Solution:

$$
\begin{aligned}
& \text { LHS }=\frac{b^{2}-c^{2}}{a^{2}} \cdot 2(k a)\left[\frac{b^{2}+c^{2}-a^{2}}{2 b c}\right]+\frac{c^{2}-a^{2}}{b^{2}} \cdot 2(k b)\left[\frac{a^{2}+c^{2}-b^{2}}{2 a c}\right]+\frac{a^{2}-b^{2}}{c^{2}} \cdot 2(k c)\left[\frac{a^{2}+b^{2}-c^{2}}{2 a b}\right] \\
& =\frac{k}{a b c}\left[\left(b^{2}-c^{2}\right)\left(b^{2}+c^{2}\right)-a^{2}\left(b^{2}-c^{2}\right)+\left(c^{2}-a^{2}\right)\left(c^{2}+a^{2}\right)-b^{2}\left(c^{2}-a^{2}\right)+\left(a^{2}+b^{2}\right)\left(a^{2}-b^{2}\right)-c^{2}\left(a^{2}-b^{2}\right)\right] \\
& =\frac{k}{a b c}\left[\not b^{4}-\mathscr{c}^{4}-a^{2} b^{2}+a^{2} c^{2}+\mathscr{c}^{4}-a^{4}-b^{2}{x^{2}}^{2}+a^{2} b^{2}+a^{4}-b^{4}-a^{2} c^{2}+b^{2} c^{2}\right]=0=\text { RHS }
\end{aligned}
$$

4. Summary

In this module sine and cosine rule's derivations were taken. These rules were applied in solving various problems.

