## 1. Details of Module and its structure

| Module Detail | Mathematics |
| :--- | :--- |
| Subject Name | Mathematics (Class XI, Semester - 1) |
| Course Name | Trigonometry: Part 7 |
| Module Name/Title | kemh_10307 |
| Module Id | Knowledge about Trigonometric Functions. |
| Pre-requisites | After going through this lesson, the learners will be able to <br> understand the following: <br> 1.Introduction <br> 2.Trigonometric equations |
| Objectives | 3. Summary |
| Keywords | Trigonometric Equations, Principal Solution, General Solution |

## 2. Development Team

| Role | Name | Affiliation |
| :--- | :--- | :--- |
| National MOOC Coordinator <br> (NMC) | Prof. Amarendra P. Behera | CIET, NCERT, New Delhi |
| Program Coordinator | Dr. Indu Kumar | CIET, NCERT, New Delhi |
| Course Coordinator (CC) / PI | Prof. Til Prasad Sarma | DESM, NCERT, New Delhi |
| Course Co-Coordinator | Ms. Anjali Khurana | CIET, NCERT, New Delhi |
| Subject Matter Expert (SME) | Ms. Kiran Seth | HOD (Math), <br> Amity International School, <br> Saket, New Delhi. |
| Review Team | Dr. S.K.S. Gautum | Retd. Professor <br> DESM, NCERT, New Delhi |

## TABLE OF CONTENTS

## 1. Introduction

2. Trigonometric equations

## 3. Summary

## 1. Introduction

In this module we will discuss trigonometric equations, their principal and general solution.

Equations involving trigonometric functions of a variable are called trigonometric equations. In this section, we shall find the solutions of such equations. It is already discussed in the previous modules that the values of $\sin x$ and $\cos x$ repeat after an interval of $2 \pi$ and the values of $\tan x$ repeat after an interval of $\pi$. The solutions of trigonometric equations for which $0 \leq x<2 \pi$ are called principal solutions. The expression involving integer ' $n$ ' which gives all solutions of a trigonometric equation is called the general solution. We shall use ' $Z$ ' to denote the set of integers.

## 2. Trigonometric Equations

## Theorem 1:

For any real numbers $x$ and $y$,

$$
\sin x=\sin y \Rightarrow x=n \pi+(-1)^{n} y, n \in Z
$$

Proof:

$$
\text { If } \sin x=\sin y
$$

$$
\Rightarrow \sin x-\sin y=0
$$

$$
\Rightarrow 2 \cos \left(\frac{x+y}{2}\right) \sin \left(\frac{x-y}{2}\right)=0
$$

which gives $\cos \left(\frac{x+y}{2}\right)=0$ or $\sin \left(\frac{x-y}{2}\right)=0$

Therefore $\frac{x+y}{2}=(2 n+1) \frac{\pi}{2}$ or $\frac{x-y}{2}=n \pi$, where $\mathrm{n} \in \mathrm{Z}$.
i.e. $x=(2 n+1) \pi-y$ or $x=2 n \pi+y$, where $\mathrm{n} \in \mathrm{Z}$.

Hence $x=(2 n+1) \pi+(-1)^{2 n+1} y$ or $x=2 n \pi+(-1)^{2 n} y$ where $\mathrm{n} \in \mathrm{Z}$.
Combining the two results, we get
$x=n \pi+(-1)^{n} y$, where $\mathrm{n} \in \mathrm{Z}$.

## Theorem 2:

For any real numbers x and y , $\cos x=\cos y \Rightarrow x=2 n \pi \pm y$, where $\mathrm{n} \in \mathrm{Z}$.

Proof:

If $\cos x=\cos y$, then
$\cos x-\cos y=0$
i.e. $-2 \sin \left(\frac{x+y}{2}\right) \sin \left(\frac{x-y}{2}\right)=0$

Thus $\sin \left(\frac{x+y}{2}\right)=0$ or $\sin \left(\frac{x-y}{2}\right)=0$

Therefore $\frac{x+y}{2}=n \pi \quad$ or $\frac{x-y}{2}=n \pi \quad$ where $\mathrm{n} \in \mathrm{Z}$.
i.e. $\quad x=2 n \pi-y$ or $x=2 n \pi+y$, where $\mathrm{n} \in \mathrm{Z}$.

Hence $\quad x=2 n \pi \pm y \quad$ where $\mathrm{n} \in \mathrm{Z}$.

## Theorem 3:

Prove that if x and y are not odd multiple of $\frac{\pi}{2}$, then $\tan x=\tan y \Rightarrow x=n \pi+y$, where $\mathrm{n} \in \mathrm{Z}$.

Proof: If $\tan x=\tan y \Rightarrow \tan x-\tan y=0$

Or $\frac{\sin x \cos y-\cos x \sin y}{\cos x \cos y}=0$
which gives $\sin (x-y)=0$.

Therefore $x-y=n \pi$, i.e., $x=n \pi+y$, where $\mathrm{n} \in \mathrm{Z}$.

Example 1: Find the principal solutions of the equation $\tan x=-\frac{1}{\sqrt{3}}$.

Solution:

We know that, $\tan \frac{\pi}{6}=\frac{1}{\sqrt{3}}$.

Thus, $\tan \left(\pi-\frac{\pi}{6}\right)=-\tan \frac{\pi}{6}=-\frac{1}{\sqrt{3}}$
and $\tan \left(2 \pi-\frac{\pi}{6}\right)=-\tan \frac{\pi}{6}=-\frac{1}{\sqrt{3}}$

Thus, $\tan \frac{5 \pi}{6}=\tan \frac{11 \pi}{6}=-\frac{1}{\sqrt{3}}$

Therefore, principal solutions are $\frac{5 \pi}{6}$ and $\frac{11 \pi}{6}$.

Example 2: Find the solution of $\sin x=-\frac{\sqrt{3}}{2}$

Solution: We have

$$
\begin{aligned}
\sin x=-\frac{\sqrt{3}}{2} & =-\sin \frac{\pi}{3} \\
& =\sin \left(\pi+\frac{\pi}{3}\right) \\
& =\sin \frac{4 \pi}{3}
\end{aligned}
$$

which gives

$$
x=n \pi+(-1)^{n} \frac{4 \pi}{3}, \text { where } \mathrm{n} \in \mathrm{Z}
$$

Example 3: Find the principal solutions of $\sec x=2$.

Solution: We have
$\sec x=2$
$\Rightarrow \cos x=\frac{1}{2}$ which is positive so x lies in first or fourth quadrant.

Therefore, $\cos x=\frac{1}{2}=\cos \frac{\pi}{3} \operatorname{or} \cos \frac{5 \pi}{3}$

Hence principal solutions are $x=\frac{\pi}{3} \operatorname{or} \frac{5 \pi}{3}$.

Example 4: Solve for $x$, if $\cot x=-\sqrt{3}$.

Solution: We have

$$
\begin{aligned}
\cot x & =-\sqrt{3} \\
\Rightarrow \tan x & =-\frac{1}{\sqrt{3}}
\end{aligned}
$$

$$
\begin{aligned}
& \Rightarrow \tan x=\frac{5 \pi}{6} \text { or } \frac{11 \pi}{6} \\
& \Rightarrow x=\frac{5 \pi}{6} \text { or } \frac{11 \pi}{6}
\end{aligned}
$$

So, principal solutions are $x=\frac{5 \pi}{6}$ or $\frac{11 \pi}{6}$

And the general solution is $x=n \pi+\frac{5 \pi}{6}$, where $\mathrm{n} \in \mathrm{Z}$.
Example 5: Solve for $x$, if $\cos 4 x=\cos 2 x$.

Solution: We have
$\cos 4 x=\cos 2 x$
$\Rightarrow 4 x=2 n \pi \pm 2 x$
$\Rightarrow 4 x-2 x=2 n \pi$ or $4 x+2 x=2 n \pi$
$\Rightarrow 2 x=2 n \pi$ or $6 x=2 n \pi$
$\Rightarrow x=n \pi$ or $x=\frac{1}{3} n \pi$

Example 6: Solve for $x$, if $\cos 3 x+\cos x-\cos 2 x=0$.
Solution: Here $\cos 3 x+\cos x-\cos 2 x=0$.

$$
\begin{aligned}
& \Rightarrow 2 \cos \left(\frac{3 x+x}{2}\right) \cos \left(\frac{3 x-x}{2}\right)-\cos 2 x=0 \\
& \Rightarrow 2 \cos 2 x \cos x-\cos 2 x=0 \\
& \Rightarrow \cos 2 x(2 \cos x-1)=0 \\
& \Rightarrow \text { either } \cos 2 x=0 \text { or }(2 \cos x-1)=0
\end{aligned}
$$

$$
\begin{aligned}
& \Rightarrow \text { either } 2 x=(2 n+1) \frac{\pi}{2} \text { or } \cos x=\frac{1}{2}=\cos \frac{\pi}{3}, \text { where } \mathrm{n} \in \mathrm{Z} . \\
& \Rightarrow \text { either } x=(2 n+1) \frac{\pi}{4} \text { or } x=2 n \pi \pm \frac{\pi}{3}, \text { where } \mathrm{n} \in \mathrm{Z} .
\end{aligned}
$$

## 3. Summary

In this module, trigonometric equations were taken and their solution derived. Principal solution and general solution of trigonometric equations were discussed.

