1. Details of Module and its structure

Module Detail		
Subject Name	Mathematics	
Course Name	Mathematics 01 (Class XI, Semester - 1)	
Module Name/Title	Algebra of Sets - Part 4	
Module Id	kemh_10104	
Pre-requisites	Understands the concept of a set, Represents a set into Roster and Set builder form, Comprehends the operations on sets which includes Union, Intersection and Complement	
Objectives	 After going through this lesson, the learners will be able to understand the following: Applies properties of the Operation of Union of Sets Applies properties of the Operation of Intersection of 	
	 Applies properties of the Operation of Complement of Sets 	
Keywords	Operation of Union, Operation of Intersection, Complement Sets	

2. Development Team

Role	Name	Affiliation
National MOOC Coordinator (NMC)	Prof. Amarendra P. Behera	CIET, NCERT, New Delhi
Program Coordinator	Dr. Mohd. Mamur Ali	CIET, NCERT, New Delhi
Course Coordinator (CC) / PI	Dr. Til Prasad Sarma	DESM, NCERT, New Delhi
Course Co-Coordinator / Co-PI	Dr. Mohd. Mamur Ali	CIET, NCERT, New Delhi
Subject Matter Expert (SME)	Ms. Anjali Chhugani	Sanskriti School, New Delhi
Review Team	Dr. Sadhna Shrivastava	KVS, Faridabad, Haryana

Table of Contents:

- 1. Some Properties of the Operation of Union
- 2. Some Properties of Operation of Intersection
- 3. Some Properties of Complement Sets
- 4. Some more examples
- 5. Summary

1. Some Properties of the Operation of Union

2) $A \cup B = B \cup A$ (Commutative law)

3) $(A \cup B) \cup C = A \cup (B \cup C)$ (Associative law)

- 4) A $\cup \phi = A$ (Law of identity element, ϕ is the identity of \cup)
- 5) $A \cup A = A$ (Idempotent law)

6) $U \cup A = U$ (Law of U)

For Example

Let $A = \{0, 1, 2, 3, 4, 5\}, B = \{2, 4, 6, 8\}$ and $C = \{1, 3, 5, 7\}$

Verify $(A \cup B) \cup C = A \cup (B \cup C)$

Solution:

 $(A \cup B) \cup C = A \cup (B \cup C)$

L.H.S. = $(A \cup B) \cup C$

A U B = $\{0, 1, 2, 3, 4, 5, 6, 8\}$

 $(A \cup B) \cup C = \{0, 1, 2, 3, 4, 5, 6, 7, 8\}$ (1)

 $R.H.S. = A \cup (B \cup C)$

 $B \cup C = \{1, 2, 3, 4, 5, 6, 7, 8\}$

 $A \cup (B \cup C) = \{0, 1, 2, 3, 4, 5, 6, 7, 8\}$ (2)

Therefore, from (1) and (2), we find that;

 $(A \cup B) \cup C = A \cup (B \cup C)$ [verified]

2. Some Properties of Operation of Intersection

(1) $A \cap B = B \cap A$ (Commutative law).

(3) $\phi \cap A = \phi$, $U \cap A = A$ (Law of ϕ and U).

(4) $A \cap A = A$ (Idempotent law)

(5) $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$ (Distributive law) i. e., \cap distributes over \cup

For example

Let $A = \{0, 1, 2, 3, 4, 5\}, B = \{2, 4, 6, 8\}$ and $C = \{1, 3, 5, 7\}$

Verify $(A \cap B) \cap C = A \cap (B \cap C)$

Solution:

For $(A \cap B) \cap C = A \cap (B \cap C)$:

L.H.S. = $(A \cap B) \cap C$

 $A \cap B = \{2, 4\}$

R.H.S. = A \cap (B \cap C)

 $B \cap C = \emptyset$

 $A \cap \{B \cap C\} = \emptyset \quad \dots \quad (2)$

Therefore, from (1) and (2), we conclude that;

 $(A \cap B) \cap C = A \cap (B \cap C)[verified]$

1. Some Properties of Complement Sets

Complement laws: (i) $A \cup A' = U$ (ii) $A \cap A' = \phi$ De Morgan's law: (i) $(A \cup B)' = A' \cap B'$ (ii) $(A \cap B)' = A' \cup B'$ Law of double complementation : (A')' = ALaws of empty set and universal set $\phi' = U$ and $U' = \phi$.

For example

Let $A = \{3, 5, 7\}, B = \{2, 3, 4, 6\}$ and $C = \{2, 3, 4, 5, 6, 7, 8\}$

(i) Verify
$$(A \cap B)' = A' \cup B'$$

(ii) Verify $(A \cup B)' = A' \cap B'$

Solution:

 $(\mathbf{i})(\mathbf{A} \cap \mathbf{B})' = \mathbf{A}' \cup \mathbf{B}'$

L.H.S. =
$$(A \cap B)'$$

 $A \cap B = \{3\}$

 $(A \cap B)' = \{2, 4, 5, 6, 7, 8\}$ (1)

 $R.H.S. = A' \cup B'$

 $A' = \{5, 7, 8\}$

 $B' = \{2, 4, 6\}$

 $A' \cup B' = \{2, 4, 5, 6, 7, 8\}$ (2)

From (1) and (2), we conclude that;

 $(A \cap B)' = (A' \cup B')$

 $(\mathbf{ii})(\mathbf{A} \cup \mathbf{B})' = \mathbf{A}' \cap \mathbf{B}'$

L.H.S. = $(A \cup B)'$

 $A \cup B = \{2, 3, 4, 5, 6, 7\}$

 $(A \cup B)' = \{8\}$ (1) $R.H.S. = A' \cap B'$ $A' = \{2, 4, 6, 8\}$ $B' = \{5, 7, 8\}$ $A' \cap B' = \{8\}$ (2) From (1) and (2), we conclude that;

 $(A \cup B)' = A' \cap B'$

2. Some more examples

If $A=\{1, 3, 5\}$, $B=\{3, 5, 6\}$ and $C=\{1, 3, 7\}$

Verify that:

(i)
$$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$$

(ii) $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$

Solution:

(i) $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$:

L.H.S. = A \cup (B \cap C)

 $B \cap C = \{3\}$

 $A \cup (B \cap C) = \{1, 3, 5\} \cup \{3\} = \{1, 3, 5\}$ (1)

 $R.H.S. = (A \cup B) \cap (A \cup C)$

A U B = $\{1, 3, 5, 6\}$

A U C = $\{1, 3, 5, 7\}$

 $(A \cup B) \cap (A \cup C) = \{1, 3, 5, 6\} \cap \{1, 3, 5, 7\} = \{1, 3, 5\}$ (2)

From (1) and (2), we conclude that;

 $A \cup (B \cap C) = A \cup B \cap (A \cup C)$ [verified]

(ii) $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$

L.H.S. = $A \cap (B \cup C)$

 $B \cup C = \{1, 3, 5, 6, 7\}$

R.H.S. = $(A \cap B) \cup (A \cap C)$

 $A \cap B = \{3, 5\}$

 $A \cap C = \{1, 3\}$

 $(A \cap B) \cup (A \cap C) = \{3, 5\} \cup \{1, 3\} = \{1, 3, 5\}$ (2)

From (1) and (2), we conclude that;

 $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$ [verified]

3.Summary

- a) Complement laws: (i) $A \cup A' = U$
 - (ii) $A \cap A' = \varphi$
- b) De Morgan's law: (i) $(A \cup B)' = A' \cap B'$

(ii) $(A \cap B)' = A' \cup B'$

- c) Law of double complementation : (A')' = A
- d) Laws of empty set and universal set : $\varphi' = U$ and $U' = \varphi$.