1. Details of Module and its structure

\(\left.\begin{array}{l|l}\hline Module Detail \& Mathematics

\hline Subject Name \& Mathematics 01 (Class XI, Semester - 1)

\hline Course Name \& Algebra of Sets - Part 4\end{array}\right]\)| kemh_10104 |
| :--- | :--- |\quad| Understands the concept of a set, Represents a set into Roster |
| :--- |
| and Set builder form, Comprehends the operations on sets |
| which includes Union, Intersection and Complement |

2. Development Team

Role	Name	Affiliation
National MOOC Coordinator (NMC)	Prof. Amarendra P. Behera	CIET, NCERT, New Delhi
Program Coordinator	Dr. Mohd. Mamur Ali	CIET, NCERT, New Delhi
Course Coordinator (CC) / PI	Dr. Til Prasad Sarma	DESM, NCERT, New Delhi
Course Co-Coordinator / Co-PI	Dr. Mohd. Mamur Ali	CIET, NCERT, New Delhi
Subject Matter Expert (SME)	Ms. Anjali Chhugani	Sanskriti School, New Delhi
Review Team	Dr. Sadhna Shrivastava	KVS, Faridabad, Haryana

Table of Contents:

1. Some Properties of the Operation of Union
2. Some Properties of Operation of Intersection
3. Some Properties of Complement Sets
4. Some more examples
5. Summary

1. Some Properties of the Operation of Union

2) $\mathrm{A} \cup \mathrm{B}=\mathrm{B} \cup \mathrm{A}$ (Commutative law)

$A \cup B$
$B \cup A$
3) $(\mathrm{A} \cup \mathrm{B}) \cup \mathrm{C}=\mathrm{A} \cup(\mathrm{B} \cup \mathrm{C})$ (Associative law $)$

4) $\mathrm{A} \cup \varphi=\mathrm{A}$ (Law of identity element, φ is the identity of \cup)
5) $\mathrm{A} \cup \mathrm{A}=\mathrm{A}$ (Idempotent law)
6) $\mathrm{U} \cup \mathrm{A}=\mathrm{U}($ Law of U$)$

For Example

Let $\mathrm{A}=\{0,1,2,3,4,5\}, \mathrm{B}=\{2,4,6,8\}$ and $\mathrm{C}=\{1,3,5,7\}$

Verify $(A \cup B) \cup C=A \cup(B \cup C)$

Solution:

$(A \cup B) \cup C=A \cup(B \cup C)$
L.H.S. $=(A \cup B) \cup C$
$A \cup B=\{0,1,2,3,4,5,6,8\}$
$(A \cup B) \cup C=\{0,1,2,3,4,5,6,7,8\}$
R.H.S. $=A \cup(B \cup C)$
$B \cup C=\{1,2,3,4,5,6,7,8\}$
$A \cup(B \cup C)=\{0,1,2,3,4,5,6,7,8\}$

Therefore, from (1) and (2), we find that;
$(\mathrm{A} \cup \mathrm{B}) \cup \mathrm{C}=\mathrm{A} \cup(\mathrm{B} \cup \mathrm{C})[$ verified $]$

2. Some Properties of Operation of Intersection

(1) $\mathrm{A} \cap \mathrm{B}=\mathrm{B} \cap \mathrm{A}$ (Commutative law).

(2) $(A \cap B) \cap C=A \cap(B \cap C)$ (Associative law).

(3) $\varphi \cap \mathrm{A}=\varphi, \mathrm{U} \cap \mathrm{A}=\mathrm{A}($ Law of φ and U$)$.
(4) $\mathrm{A} \cap \mathrm{A}=\mathrm{A}$ (Idempotent law)
(5) $\mathrm{A} \cap(\mathrm{B} \cup \mathrm{C})=(\mathrm{A} \cap \mathrm{B}) \cup(\mathrm{A} \cap \mathrm{C})($ (Distributive law $)$ i. e., \cap distributes over \cup

For example

Let $\mathrm{A}=\{0,1,2,3,4,5\}, \mathrm{B}=\{2,4,6,8\}$ and $\mathrm{C}=\{1,3,5,7\}$

Verify $(A \cap B) \cap C=A \cap(B \cap C)$

Solution:

For $(A \cap B) \cap C=A \cap(B \cap C):$
L.H.S. $=(A \cap B) \cap C$
$\mathrm{A} \cap \mathrm{B}=\{2,4\}$
$(A \cap B) \cap C=\emptyset$ \qquad
R.H.S. $=A \cap(B \cap C)$
$\mathrm{B} \cap \mathrm{C}=\varnothing$
$\mathrm{A} \cap\{\mathrm{B} \cap \mathrm{C}\}=\varnothing$ \qquad

Therefore, from (1) and (2), we conclude that;
$(\mathrm{A} \cap \mathrm{B}) \cap \mathrm{C}=\mathrm{A} \cap(\mathrm{B} \cap \mathrm{C})[$ verified $]$

1. Some Properties of Complement Sets

Complement laws: (i) $\mathrm{A} \cup \mathrm{A}^{\prime}=\mathrm{U}$

$$
\text { (ii) } \mathrm{A} \cap \mathrm{~A}^{\prime}=\varphi
$$

De Morgan's law: (i) $(\mathrm{A} \cup \mathrm{B})^{\prime}=\mathrm{A}^{\prime} \cap \mathrm{B}^{\prime}$

$$
\text { (ii) }(\mathrm{A} \cap \mathrm{~B})^{\prime}=\mathrm{A}^{\prime} \cup \mathrm{B}^{\prime}
$$

Law of double complementation $:\left(\mathrm{A}^{\prime}\right)^{\prime}=\mathrm{A}$
Laws of empty set and universal set $\varphi^{\prime}=\mathrm{U}$ and $\mathrm{U}^{\prime}=\varphi$.
For example

Let $A=\{3,5,7\}, B=\{2,3,4,6\}$ and $C=\{2,3,4,5,6,7,8\}$
(i) Verify $(\mathrm{A} \cap \mathrm{B})^{\prime}=\mathrm{A}^{\prime} \cup \mathrm{B}^{\prime}$
(ii) Verify $(\mathrm{A} \cup \mathrm{B})^{\prime}=\mathrm{A}^{\prime} \cap \mathrm{B}^{\prime}$

Solution:

(i) $(\mathrm{A} \cap \mathrm{B})^{\prime}=\mathrm{A}^{\prime} \cup \mathrm{B}^{\prime}$
L.H.S. $=(\mathrm{A} \cap \mathrm{B})^{\prime}$
$A \cap B=\{3\}$
$(A \cap B)^{\prime}=\{2,4,5,6,7,8\}$
R.H.S. = A' $\cup \mathrm{B}^{\prime}$
$A^{\prime}=\{5,7,8\}$
$B^{\prime}=\{2,4,6\}$
$\mathrm{A}^{\prime} \cup \mathrm{B}^{\prime}=\{2,4,5,6,7,8\}$

From (1) and (2), we conclude that;
$(\mathrm{A} \cap \mathrm{B})^{\prime}=\left(\mathrm{A}^{\prime} \cup \mathrm{B}^{\prime}\right)$
(ii) $(\mathrm{A} \cup \mathrm{B})^{\prime}=\mathrm{A}^{\prime} \cap \mathrm{B}^{\prime}$
L.H.S. $=(\mathrm{A} \cup \mathrm{B})^{\prime}$
$\mathrm{A} \cup \mathrm{B}=\{2,3,4,5,6,7\}$

$$
\begin{align*}
& (A \cup B)^{\prime}=\{8\} \tag{1}\\
& \text { R.H.S. }=A^{\prime} \cap B^{\prime} \\
& A^{\prime}=\{2,4,6,8\} \\
& B^{\prime}=\{5,7,8\} \\
& A^{\prime} \cap B^{\prime}=\{8\} \quad . . \tag{2}
\end{align*}
$$

From (1) and (2), we conclude that;
$(\mathrm{A} \cup \mathrm{B})^{\prime}=\mathrm{A}^{\prime} \cap \mathrm{B}^{\prime}$

2. Some more examples

If $\mathrm{A}=\{1,3,5\}, \mathrm{B}=\{3,5,6\}$ and $\mathrm{C}=\{1,3,7\}$

Verify that:

(i) $\mathrm{A} \cup(\mathrm{B} \cap \mathrm{C})=(\mathrm{A} \cup \mathrm{B}) \cap(\mathrm{A} \cup \mathrm{C})$
(ii) $\mathrm{A} \cap(\mathrm{B} \cup \mathrm{C})=(\mathrm{A} \cap \mathrm{B}) \cup(\mathrm{A} \cap \mathrm{C})$

Solution:

(i) $A \cup(B \cap C)=(A \cup B) \cap(A \cup C):$
L.H.S. $=A \cup(B \cap C)$
$B \cap C=\{3\}$
$A \cup(B \cap C)=\{1,3,5\} \cup\{3\}=\{1,3,5\}$
R.H.S. $=(A \cup B) \cap(A \cup C)$
$A \cup B=\{1,3,5,6\}$
$A \cup C=\{1,3,5,7\}$
$(A \cup B) \cap(A \cup C)=\{1,3,5,6\} \cap\{1,3,5,7\}=\{1,3,5\}$

From (1) and (2), we conclude that;
$A \cup(B \cap C)=A \cup B \cap(A \cup C)[$ verified $]$
(ii) $A \cap(B \cup C)=(A \cap B) \cup(A \cap C)$
L.H.S. $=A \cap(B \cup C)$
$B \cup C=\{1,3,5,6,7\}$
$A \cap(B \cup C)=\{1,3,5\} \cap\{1,3,5,6,7\}=\{1,3,5\}$
R.H.S. $=(A \cap B) \cup(A \cap C)$
$A \cap B=\{3,5\}$
$\mathrm{A} \cap \mathrm{C}=\{1,3\}$
$(A \cap B) \cup(A \cap C)=\{3,5\} \cup\{1,3\}=\{1,3,5\}$

From (1) and (2), we conclude that;
$A \cap(B \cup C)=(A \cap B) \cup(A \cap$
C) $[$ verified $]$

3.Summary

- Some Properties of the Operation of Union
i. $\quad \mathrm{A} \cup \mathrm{B}=\mathrm{B} \cup \mathrm{A}$ (Commutative law)
ii. $\quad(\mathrm{A} \cup \mathrm{B}) \cup \mathrm{C}=\mathrm{A} \cup(\mathrm{B} \cup \mathrm{C})$ (Associative law)
iii. $\mathrm{A} \cup \varphi=\mathrm{A}$ (Law of identity element, φ is the identity of U)
iv. $\quad \mathrm{A} \cup \mathrm{A}=\mathrm{A}$ (Idempotent law)
v. $\quad \mathrm{U} \cup \mathrm{A}=\mathrm{U}(\mathrm{Law}$ of U$)$
(i) Some Properties of Operation of Intersection
i. $\quad \mathrm{A} \cap \mathrm{B}=\mathrm{B} \cap \mathrm{A}$ (Commutative law).
ii. $(A \cap B) \cap C=A \cap(B \cap C)$ (Associative law).
iii. $\varphi \cap A=\varphi, U \cap A=A(L a w$ of φ and $U)$.
iv. $\mathrm{A} \cap \mathrm{A}=\mathrm{A}$ (Idempotent law)
v. $A \cap(B \cup C)=(A \cap B) \cup(A \cap C)($ Distributive law $)$ i.e., \cap distributes over \cup
- Some Properties of Complement Sets
a) Complement laws: (i) $\mathrm{A} \cup \mathrm{A}^{\prime}=\mathrm{U}$
(ii) $\mathrm{A} \cap \mathrm{A}^{\prime}=\varphi$
b) De Morgan's law: (i) $(\mathrm{A} \cup \mathrm{B})^{\prime}=\mathrm{A}^{\prime} \cap \mathrm{B}^{\prime}$ (ii) $(\mathrm{A} \cap \mathrm{B})^{\prime}=\mathrm{A}^{\prime} \cup \mathrm{B}^{\prime}$
c) Law of double complementation: $\left(\mathrm{A}^{\prime}\right)^{\prime}=\mathrm{A}$
d) Laws of empty set and universal set : $\varphi^{\prime}=\mathrm{U}$ and $\mathrm{U}^{\prime}=\varphi$.

