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1. Some Properties of the Operation of Union 

2) A ∪  B = B ∪  A (Commutative law)  

A ∪  B    B ∪  A  

 

3) ( A ∪  B ) ∪  C = A ∪  ( B ∪  C) (Associative law )  

  

 

4) A ∪  φ = A (Law of identity element, φ is the identity of ∪)  

5)  A ∪  A = A (Idempotent law) 



 

 

6)  U ∪  A = U (Law of U) 

For Example  

Let A = {0, 1, 2, 3, 4, 5}, B = {2, 4, 6, 8} and C = {1, 3, 5, 7} 

Verify (A ∪  B) ∪  C = A ∪  (B ∪  C) 

Solution: 

(A ∪  B) ∪  C = A ∪  (B ∪  C) 

L.H.S. = (A ∪  B) ∪  C 

 

A ∪  B = {0, 1, 2, 3, 4, 5, 6, 8} 

 

(A ∪  B) ∪  C = {0, 1, 2, 3, 4, 5, 6, 7, 8}   ……………….. (1) 

 

R.H.S. = A ∪  (B ∪  C) 

 

B ∪  C = {1, 2, 3, 4, 5, 6, 7, 8} 

 

A ∪  (B ∪  C) = {0, 1, 2, 3, 4, 5, 6, 7, 8}   ……………….. (2) 

 

Therefore, from (1) and (2), we find that; 

 

(A ∪  B) ∪  C = A ∪  (B ∪  C) [verified] 

 

2.  Some Properties of Operation of Intersection  

(1) A ∩ B = B ∩ A (Commutative law).  



 

 

     B ∩ A  

(2) ( A ∩ B ) ∩ C = A ∩ ( B ∩ C ) (Associative law).  

  

 

(3) φ ∩ A = φ, U ∩ A = A (Law of φ and U).  

(4) A ∩ A = A (Idempotent law)  

(5) A ∩ ( B ∪  C ) = ( A ∩ B ) ∪  ( A ∩ C ) (Distributive law ) i. e., ∩ distributes over ∪  

 

 



 

 

 ( A ∩ B ) ∪  ( A ∩ C )

 

For example 

Let A = {0, 1, 2, 3, 4, 5}, B = {2, 4, 6, 8} and C = {1, 3, 5, 7} 

 

Verify (A ∩ B) ∩ C = A ∩ (B ∩ C) 

Solution: 

For (A ∩B)∩C = A∩(B∩C) : 

 

L.H.S. = (A∩B)∩C 

 

A∩B = {2, 4} 

 



 

 

(A∩B)∩C = ∅  ……………….. (1) 

 

R.H.S. = A ∩(B∩C) 

 

B∩ C = ∅  

 

A ∩{B∩C} = ∅  ……………….. (2) 

 

Therefore, from (1) and (2), we conclude that; 

(A ∩B)∩C = A∩(B∩C)[verified] 

 

1. Some Properties of Complement Sets  

Complement laws: (i) A ∪  A′ = U  

      (ii) A ∩ A′ = φ  

De Morgan’s law: (i) (A ∪  B)´ = A′ ∩ B′  

                             (ii) (A ∩ B)′ = A′ ∪  B′  

Law of double complementation : (A′)′ = A  

Laws of empty set and universal set φ′ = U and U′ = φ.  

For example  

Let A = {3, 5, 7}, B = {2, 3, 4, 6} and C = {2, 3, 4, 5, 6, 7, 8} 

 

(i) Verify (A ∩ B)' = A' ∪  B' 

 

(ii) Verify (A ∪  B)' = A' ∩ B' 



 

 

Solution: 

 

(i)(A ∩ B)' = A' ∪  B' 

 

L.H.S. = (A ∩ B)' 

 

A ∩ B = {3} 

 

(A ∩ B)' = {2, 4, 5, 6, 7, 8}   ……………….. (1) 

 

R.H.S. = A' ∪  B' 

 

A' = {5, 7, 8} 

 

B' = {2, 4, 6} 

 

A' ∪  B' = {2, 4, 5, 6, 7, 8}   ……………….. (2) 

 

From (1) and (2), we conclude that; 

(A ∩ B)' = (A' ∪  B') 

 

(ii)(A ∪  B)' = A' ∩ B' 

 

L.H.S. = (A ∪  B)' 

 

A∪B = {2, 3, 4, 5, 6, 7} 

 



 

 

(A ∪  B)' = {8}   ……………….. (1) 

 

R.H.S. = A' ∩ B' 

 

A' = {2, 4, 6, 8} 

 

B' = {5, 7, 8} 

 

A' ∩ B' = {8}   ……………….. (2) 

 

From (1) and (2), we conclude that; 

(A ∪  B)' = A' ∩ B' 

 

2. Some more examples 

If A={1, 3, 5}, B = {3, 5, 6} and C = {1, 3, 7} 

     Verify that: 

(i) A ∪  (B ∩ C) = (A ∪  B) ∩ (A ∪  C) 

(ii)  A ∩ (B ∪  C) = (A ∩ B) ∪  (A ∩ C) 

Solution: 

(i) A ∪  (B ∩ C) = (A ∪  B) ∩ (A ∪  C) : 

 

L.H.S. = A ∪  (B ∩ C) 

 



 

 

B ∩ C = {3} 

 

A ∪  (B ∩ C) = {1, 3, 5} ∪{3} = {1, 3, 5} ……………….. (1) 

 

R.H.S. = (A ∪  B) ∩ (A ∪  C) 

 

A ∪  B = {1, 3, 5, 6} 

 

A ∪  C = {1, 3, 5, 7} 

 

(A ∪  B) ∩ (A ∪  C) = {1, 3, 5, 6} ∩ {1, 3, 5, 7} = {1, 3, 5}   ……………….. (2) 

 

From (1) and (2), we conclude that; 

 

A ∪  (B ∩ C) = A ∪  B ∩ (A ∪  C) [verified] 

(ii) A ∩ (B ∪  C) = (A ∩ B) ∪  (A ∩ C) 

 

L.H.S. = A ∩ (B ∪  C) 

 

B ∪  C = {1, 3, 5, 6, 7} 

 

A ∩ (B ∪  C) = {1, 3, 5} ∩ {1, 3, 5, 6, 7} = {1, 3, 5}   ……………….. (1) 

 

R.H.S. = (A ∩ B) ∪  (A ∩ C) 

 

A ∩ B = {3, 5} 

 



 

 

A ∩ C = {1, 3} 

 

(A ∩ B) ∪  (A ∩ C) = {3, 5} ∪  {1, 3} = {1, 3, 5}   ……………….. (2) 

 

From (1) and (2), we conclude that; 

A ∩ (B ⋃ C) = (A ∩ B) ⋃ (A ∩ C) [verified] 

3.Summary 

 

 Some Properties of the Operation of Union 

i. A ∪  B = B ∪  A (Commutative law)  

ii. ( A ∪  B ) ∪  C = A ∪  ( B ∪  C) (Associative law )  

iii. A ∪  φ = A (Law of identity element, φ is the identity of ∪)  

iv.  A ∪  A = A (Idempotent law) 

v.  U ∪  A = U (Law of U) 

 

(i) Some Properties of Operation of Intersection 

i. A ∩ B = B ∩ A (Commutative law). 

ii. ( A ∩ B ) ∩ C = A ∩ ( B ∩ C ) (Associative law).  

iii. φ ∩ A = φ, U ∩ A = A (Law of φ and U).  

iv. A ∩ A = A (Idempotent law)  

v. A ∩ ( B ∪  C ) = ( A∩B ) ∪  ( A∩C ) (Distributive law ) i.e.,∩ distributes over ∪  

 

 

 Some Properties of Complement Sets  



 

 

a) Complement laws: (i) A ∪  A′ = U  

                  (ii) A ∩ A′ = φ  

b) De Morgan’s law: (i) (A ∪  B)´ = A′ ∩ B′  

                              (ii) (A ∩ B)′ = A′ ∪  B′  

c) Law of double complementation : (A′)′ = A  

d) Laws of empty set and universal set : φ′ = U and U′ = φ.  

 

 


