1. মডিউলের কাঠামো ও তার ধারণা:

মডিউল বিশদ		
বিষ্যের লাম	গণিত	
কোর্সের নাম	গণিত 01 (একাদশ শ্রেণি, সেমিস্টার 1)	
মডিউলের নাম / শিরোনাম	সেটের প্রতিকসমূহ - পর্ব 3	
মডিউলের আইডি	kemh_10103	
প্রাক্-প্রয়োজনীয় বিষয়	সেটের ধারণা। দুটি দলের মধ্যে রেখাচিত্রের মাধ্যমে সম্পর্ক উপস্থাপনা।	
উদ্দেশ্য	এই পাঠের মধ্যে দিয়ে যাওয়ার পরে শিক্ষার্থীরা নিম্নলিখিত বিষয়গুলো করতে সক্ষম হবে: • ভেনচিত্র ব্যবহার করে সেটকে রেখাচিত্রের মাধ্যমে প্রকাশ করতে পারবে! • সেটের উপর নিচের প্রক্রিয়াসমূহ এবং তাদের সম্পর্ক ভেন চিত্রের মাধ্যমে উপস্থাপন করতে পারবে • সংযোগ / যোগ • ছেদ • পূরক • অন্তর • সেটের উপর প্রক্রিয়া সমূহের উপস্থাপন সঠিক প্রতীক ব্যবহার করতে পারবে!	
মূল শব্দগুচ্ছ	ভেনচিত্র, সেটের সংযোগ / যোগ, সেটের ছেদ, পূরক সেট্, সেটের অন্তর	

2. উন্নয়নকারী দল:

চরিত্র	নাম	কার্যস্থান
জাতীয় MOOC সমন্বয়কারী	প্রফেসর অম্ব্লেদ্র পি. বেহেরা	CIET, NCERT, নিউ দিলি্ল
(NMC)		· · · · · · · · · · · · · · · · · · ·
কার্যক্রম সমন্বয়কারী	ডঃ মোঃমামুর আলী	CIET, NCERT, নিউ দিলি্ল
কোর্স সমন্বয়কারী (CC) / PI	ডঃ তিল প্রসাদ শর্মা	DESM, NCERT, নিউ দিলি্ল
কোর্স সহ-সমন্বয়কারী / Co-PI	ডঃ মোঃ মামুর আলি	CIET, NCERT, নিউ দিলি্ল
বিষয়ের বিশেষজ্ঞ (SME)	এম.এস. অঞ্জলি চৌগানি	সংস্কৃতি বিদ্যালয়, নিউ দিলি্ল
পুনর্বিবেচনাকারী দল	ডঃ সাধনা শ্রীবাস্তব	KVS, ফরিদাবাদ, হরিয়ানা
অনুবাদক	শ্রী রাজিব দাস	সানি্তপুর পৌর উচ্চ বিদ্যালয় (এইচ।
		এস।), পশ্চিমবঙ্গ

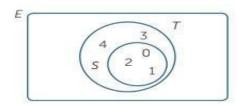
সূচিপত্ৰ:

- 1. ভেনচিত্র
- 2. সেটের সংযোগ / যোগ
- 3. সেটের ছেদ
- 4. পুরক সেট
- 5. সেটের অন্তর
- 6. ভেনচিত্রের সাহায্যে বিচ্ছেদ সেটের উপস্থাপনা
- 7. সারসংক্ষেপ

1. ভেনচিত্র

চিত্রের মাধ্যমে প্রকাশ গণিতকে আরও সহজ করে তোলে কারণ তারা আমাদের পুরো পরিস্থিতি এক নজরে দেখতে সহায়তা করে। ইংরেজ গণিতজ্ঞ জন ভেন (১৮৩৪ – ১৯২৩) সেট্ উপস্থাপনের জন্য চিত্রের ব্যবহার শুরু করেন, যাকে ভেনচিত্র বলে।

বেশিরভাগ সমস্যায় সেট্ জড়িত, একটি বৃহত্তর সেট্ নির্বাচন করা সুবিধাজনক যেটিতে সমস্ত সেটের সমস্ত উপাদান থাকবে। এই বৃহৎ সেটটিকে **সার্বিক সেট্** বলা হয়, এবং যাকে আমরা **E** প্রতীক চিহ্ন দ্বারা প্রকাশ করি। ভেনচিত্রে, সার্বিক সেটকে সাধারণত একটি আয়তক্ষেত্র দিয়ে বোঝানো হয় এবং অন্যান্য উপসেটগুলিকে আয়তক্ষেত্রের ভেতর বৃত্ত দ্বারা প্রকাশ করা হয়।


উদাহরণ হিসেবে, যদি $V = \{$ ইংরেজি স্থরবর্ণগুলি $\}$ ও আমরা সার্বিক সেট্ হিসেবে $E = \{$ ইংরেজি বর্ণমালার অক্ষরগুলি $\}$ ধরলে বর্ণমালার সমস্ত অক্ষরগুলি নিচের চিত্রের মত আয়তক্ষেত্রের ভেতরে এভাবে দেখালো যায়।

ভেনচিত্রের সাহায্যে উপসেটসমূহের উপস্থাপনা

যখন আমরা জানি S, T-এর একটি উপসেট,তখন আমরা S ব্তের ভেতরে আর একটি ব্ত এঁকে T-কে প্রকাশ করিI

উদাহরণস্বরূপ, ধরি $S = \{ 0, 1, 2 \}$ এবং $T = \{ 0, 1, 2, 3, 4 \}$ তবে S, T-এর উপসেট্ হবে, যা নিচে ভেনচিত্রের মাধ্যমে অঙ্কন করে দেখানো হলো**।**

2. সেটের সংযোগ / যোগ

দুটি প্রদত্ত সেটের সংযোগ হল সর্বনিম্ন সেট্ যাতে উভয় সেটের সমস্ত উপাদানগুলি রয়েছে। প্রদত্ত **A** এবং **B** সেট্ দুটির সংযোগ হল এমন একটি সেট্ যেটা **A** এবং **B** সমস্ত উপাদানগুলি দ্বারা গঠিত, কিন্তু কোন উপাদানের পুনরাবৃত্তি হয় না।

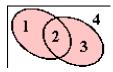
সেটের সংযোগ '∪" চিহ্ন দ্বারা প্রকাশ করা হয়।

এই নতুন সেটটিতে **A** এবং **B** এর সমস্ত উপাদানগুলি রয়েছে যাতে কোন উপাদানের পুনরাবৃত্তি নেই এবং একেই **A এবং B-এর সংযোগ** নামকরণ করা হয়েছে।

উদাহরণস্বরূপ,

ধরি সেট্ $\mathbf{A} = \{2, 4, 5, 6\}$, সেট্ $\mathbf{B} = \{4, 6, 7, 8\}$

A ও **B** সেটের কোন উপাদান পুনরাবৃত্ত না করে সমস্ত উপাদান গুলি নিলে আমরা একটি নতুন সেট্ পাবো = { 2, 4, 5, 6, 7, 8 } या AUB তে আছে।


উদাহরণস্বরূপ,

সুতরাং, কোন সেটের সঙ্গে শূণ্য সেটের সংযোগ করলে সেই সেটটিকেই পাওয়া যায়।

সংযোগ এবং শব্দ ''অথবা''

"অথবা" শব্দটি আমাদের জানায় যে সেখানে দুটি সেটের সংযোগ রয়েছে। উদাহরণ হিসেবে, { গায়কেরা } U { বাদ্য শিল্পীরা } = {যেসকল ব্যক্তিরা গান করেন অথবা বাদ্যযন্ত্র বাজান } { ইংরেজি বর্ণমালার স্বরবর্ণগুলি} U { 'dingo' শব্দের অক্ষর গুলি } = {সেই সকল ইংরেজি বর্ণমালার অক্ষরগুলি যা স্বরবর্ণ অথবা 'dingo' শব্দতে আছে}

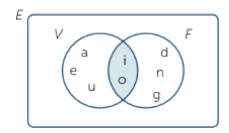
সূতরাং,
$$\mathbf{A} \cup \mathbf{B} = \{x : x \in \mathbf{A} \text{ অথবা } x \in \mathbf{B}\}$$
 ভেনচিত্র ব্যবহার করে সেটের সংযোগের উপস্থাপনা $\mathbf{A} = \{1, 2\}; \ \mathbf{B} = \{2, 3\}; \ \mathbf{U} = \{1, 2, 3, 4\}$ $\mathbf{A} \cup \mathbf{B} = \{1, 2\} \cup \{2, 3\}$ $\mathbf{A} \cup \mathbf{B} = \{1, 2, 3\}$ ভেনচিত্র:

3. দুটি সেটের ছেদ

দুটি সেট্ **A** এবং **B** –এর ছেদটি **A** ও **B**-এর সাথে যুক্ত সমস্ত সাধারণ উপাদানগুলি নিয়ে গঠিত এবং এটিকে **A** \cap **B** আকারে প্রকাশ করা হয়।

উদাহরণস্বরূপ, কিছু সঙ্গীত শিল্পী গায়ক এবং তাদের মধ্যে কিছু শিল্পীরা বাদ্যযন্ত্রও বাজান। যদি $\mathbf{A} = \{$ গায়কেরা $\}$ এবং $\mathbf{B} = \{$ বাদ্য শিল্পীরা $\}$ হয়, তবে $\mathbf{A} \cap \mathbf{B} = \{$ সেই সকল গায়ক যারা বাদ্যযন্ত্রও বাজাতে পারেন $\}$ ছেদ এবং শব্দ "এবং"

'এবং' শব্দটি আমাদের জানায় যে সেখানে দুটি সেটের ছেদ রয়েছে।


উদাহরণস্বরূপ, { গায়কেরা } ∩ { বাদ্য শিল্পীরা } = { যেসকল ব্যক্তিরা গানও করেন এবং বাদ্যযন্ত্রও বাজাতে পারেন }

{ ইংরেজি বর্ণমালার স্বরবর্ণগুলি } ∩ { 'dingo' শব্দের অক্ষরগুলি } = { সেই সকল ইংরেজি বর্ণমালার অক্ষরগুলি যা স্বরবর্ণ এবং 'dingo' শব্দতে আছে }

ভেন্টিত্রের সাহায্যে সেটের ছেদের উপস্থাপনা

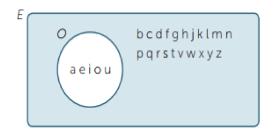
যদি $V=\{$ ইংরেজি বর্ণমালার স্বরবর্ণগুলি $\}$ এবং $F=\{$ 'dingo' শব্দের অক্ষরগুলি $\}$ হ্ম, তবে, $\textbf{\textit{V}} \cap \textbf{\textit{F}}=\{$ i,o $\}$

এই শেষ উদাহরণটি ভেনচিত্রের সাহায্যে নিম্নরূপে দেখানো যেতে পারে

4. পূরক সেট্

মলে করি, \boldsymbol{E} কে সার্বিক সেট্ হিসাবে নেওয়া হয়েছে \boldsymbol{S} সেটের পূরক সেটিট \boldsymbol{E} সেটের সেইসব উপাদান দিয়ে গঠিত হবে যেগুলি \boldsymbol{S} -এর মধ্যে থাকবে না । \boldsymbol{S} সেটের পূরক সেটকে \boldsymbol{S}^c বা \boldsymbol{S}' ঘারা সূচিত করা হয় । \boldsymbol{S} দাহরণস্বরূপ, যদি $\boldsymbol{E}=\{$ অথও সংখ্যাসমূহ $\}$ এবং $\boldsymbol{O}=\{$ অযুগ্ন অথন্ড সংখ্যাসমূহ $\}$ হয়, তবে, $\boldsymbol{O}'=\{$ যুগ্ন অথন্ড সংখ্যাসমূহ $\}$ হবে \boldsymbol{I}

পূরক এবং শব্দ "না"


'না' শব্দটি একটি পূরক সেটের সমার্থক শব্দ**l**

উদাহরণস্বরূপ, ওপরের দুটি উদাহরণের মধ্যে

 $V' = \{$ ইংরেজি স্থরবর্ণ ছাড়া বাকি অক্ষরগুলি $\} = \{$ ইংরেজি ব্যঞ্জনবর্ণগুলি $\}$ $O' = \{$ অযুগ্ম বাদে অখন্ড সংখ্যাগুলি $\} = \{$ যুগ্ম অখন্ড সংখ্যাগুলি $\}$

ভেন্টত্রের সাহায্যে পুরক সেটের উপস্থাপনা

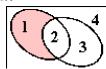
উদাহরণ হিসেবে, $\vec{E} = \{$ ইংরেজি বর্ণমালার অক্ষরগুলি $\}$ এবং $V = \{$ ইংরেজি বর্ণমালার স্বরবর্ণ গুলি $\}$ তবে, $V' = \{$ ইংরেজি বর্ণমালার ব্যঙ্গনবর্ণগুলি $\}$ উপরের উদাহরণের V' সেটটিকে ভেনচিত্রের সাহায্যে প্রকাশ করলে পাবো:

বিশেষ দ্রষ্টব্য:

- (1) সার্বিক সেটের পূরক সেট্ হল শূন্য সেট্।
- (2) শূন্য সেটের পূরক সেট্ হল সার্বিক সেট্

5. দুটি সেটের অন্তর

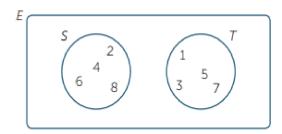
যদি **A** এবং **B** দুটি সেট্ হয়, তবে তাদের অন্তরকে **A** – **B** অথবা **A** / **B** রূপে প্রকাশ করা হয়**। A** – **B** এর অর্থ হলো সেটটি **A** সেটের সেইসব উপাদান নিয়ে গঠিত হবে যা **B** সেটের উপাদান নয়। **B** – **A** এর অর্থ হলো সেটটি **B** সেটের সেইসব উপাদান নিয়ে গঠিত হবে যা **A** সেটের উপাদান নয়।


মাধারণভাবে,
$$\mathbf{A} - \mathbf{B} = \{ x : x \in \mathbf{A}, \ 14 < x \notin \mathbf{B} \}$$

$$\mathbf{B} - \mathbf{A} = \{ x : x \in \mathbf{B}, \ 14 < x \notin \mathbf{A} \}$$

উদাহরণ হিসাবে, যদি
$$\mathbf{A} = \{ 2, 3, 4 \}$$
 এবং $\mathbf{B} = \{ 4, 5, 6 \}$ হয়, তবে $\mathbf{A} - \mathbf{B} = \{ 2, 3 \}$ $\mathbf{B} - \mathbf{A} = \{ 5, 6 \}$

বিশেষ দ্রষ্টব্য: যদি A এবং B বিচ্ছেদ সেট্ হয়, তবে A - B = A এবং B - A = B হবে। ভেনচিত্রের সাহায্যে সেটের অন্তরের উপস্থাপনা


ধরি,
$$\mathbf{A} = \{ 1, 2 \}$$
 এবং $\mathbf{B} = \{ 2, 3 \}$ হ্ম, তবে $\mathbf{A} - \mathbf{B} = \{ 1, 2 \} - \{ 2, 3 \}$

6. ভেন্চিত্রের সাহায্যে বিচ্ছেদ সেটের উপস্থাপনা

দুটি সেটকে বিচ্ছেদ সেট্ বলা হয় যথন তাদের মধ্যে কোন সাধারণ উপাদান থাকে না

উদাহরণস্বরূপ: S = { 2, 4, 6, 8 } এবং T = { 1, 3, 5, 7 } সেট্ দুটি বিচ্ছেদ সেট্ l

7. সারসংস্থেপ

ধরি, A এবং B দুটি কোন যথোপযুক্ত সার্বিক সেট্ E এর উপসেট

- i. সেটের সংযোগ $m{A} \cup m{B}$ সেটটি হল $m{A}$ অথবা $m{B}$ -এর সাথে যুক্ত সমস্ত উপাদানগুলি নিয়ে গঠিত $m{I}$
- ii. সেটের ছেদ A ∩ B সেটটি হল A এবং B-এর সাধারণ উপাদানগুলি নিয়ে গঠিতI
- iii. পূরক সেট্ $m{A}^c$ হল $m{E}$ -এর সমস্ত উপাদানগুলি নিয়ে গঠিত কিন্তু এতে $m{A}$ -এর কোন উপাদান থাকবে না $m{I}$
- iv. বিচ্ছেদ সেট্ A B সেটে A সেটের সেইসব উপাদানগুলি থাকবে যা B সেটের উপাদান ন্য।
- v. সেটের বেশিরভাগ সম্পর্কগুলি যে চিত্রের মাধ্যমে প্রকাশ করা হয় তা ভেনচিত্র হিসাবে পরিচিত**।**