1. Details of Module and its structure

Module Detail	Mathematics
Subject Name	Mathematics 01 (Class XI, Semester - 1)
Course Name	Subsets and Supersets - Part 2
Module Name/Title	kemh_10102
Module Id	Understands the concept of a set, Represents a set into Roster and Set builder form, Describes a set as finite, Infinite, Empty, Singleton
Pre-requisites	After going through this lesson, the learners will be able to do the following:
Objectives	

- Write subsets of a given set
- Represent Interval-open or closed, as a subset of a given set
- Write Power Set for a given set
- Find the number of subsets of a given set
- Find Cardinality of a set based on the number of elements in it

Subset, Superset, Power Set, Interval, Cardinality of a set

2. Development Team

Role	Name	Affiliation
National MOOC Coordinator (NMC)	Prof. Amarendra P. Behera	CIET, NCERT, New Delhi
Program Coordinator	Dr. Mohd. Mamur Ali	CIET, NCERT, New Delhi
Course Coordinator (CC) / PI	Dr. Til Prasad Sarma	DESM, NCERT, New Delhi
Course Co-Coordinator / Co-PI	Dr. Mohd. Mamur Ali	CIET, NCERT, New Delhi
Subject Matter Expert (SME)	Ms. Anjali Chhugani	Sanskriti School, New Delhi
Review Team	Dr. Sadhna Shrivastava	KVS, Faridabad, Haryana

Table of Contents:

1. Subset of a set
2. Superset of a set
3. Intervals as subset
4. Power set
5. Number of Subsets of a given Set
6. Cardinality of a set
7. Summary

1. Subsets of a set

Sets of things are often further subdivided. For example, owls are a particular type of bird, so every owl is also a bird. We express this in the language of sets by saying that the set of owls is a subset of the set of birds.

A set S is called a subset of another set T if every element of S is an element of T. This is written as

$$
\mathbf{S} \subseteq \mathbf{T}\left(\text { Read this as ' } \mathrm{S} \text { is a subset of } \mathrm{T}^{\prime} .\right)
$$

The new symbol \subset means 'is a subset of'.

Thus $\{$ owls $\} \subset\{$ birds $\}$ because every owl is a bird.

Similarly, if $A=\{2,4,6\}$ and $B=\{0,1,2,3,4,5,6\}$, then $A \subset B$, because every element of A is an element of B.

The sentence ' \mathbf{S} is not a subset of \mathbf{T} ' is written as

$$
\mathbf{S} \nsubseteq \mathbf{T}
$$

This means that at least one element of S is not an element of T. For example,
$\{$ birds $\} \nsubseteq\{$ flying creatures $\}$
because an ostrich is a bird, but it does not fly.

Similarly, if $A=\{0,1,2,3,4\}$ and $B=\{2,3,4,5,6\}$, then

A $\ddagger \mathrm{B}$, because $0 \in \mathrm{~A}$, but $0 \notin \mathrm{~B}$.

The set itself and the empty set are always subsets.
Any set S is a subset of itself, because every element of S is an element of S.

For example: $\{$ birds $\} \subset\{$ birds $\}$ and

$$
\{1,2,3,4,5,6\}=\{1,2,3,4,5,6\} .
$$

Furthermore, the empty set Φ is a subset of every set S,

2. Superset of a set

If A and B are two sets, and every element of set A is also an element of set B, then B is called a superset of A and we write it as $\mathbf{B} \supseteq \mathbf{A}$.

3. Equal Sets

If A and B are two sets, then A is called the proper subset of B if $\mathrm{A} \subseteq \mathrm{B}$ but $\mathrm{B} \nsubseteq \mathrm{A}$
i.e., $\mathrm{A} \neq \mathrm{B}$. The symbol ' \subset ' is used to denote proper subset. Symbolically, we write $\mathbf{A} \subset \mathbf{B}$.

Note:

No set is a proper subset of itself.

Null set or \emptyset is a proper subset of every set.

For example: $\mathrm{A}=\{\mathrm{p}, \mathrm{q}, \mathrm{r}\}$

$$
B=\{p, q, r, s, t\}
$$

Here A is a proper subset of B as all the elements of set A are in set B and also $\mathrm{A} \neq \mathrm{B}$.

Some of the obvious relations among these subsets are:

$$
\mathbf{N} \subset \mathbf{Z} \subset \mathbf{Q}, \mathbf{Q} \subset \mathbf{R}, \mathbf{T} \subset \mathbf{R}, \mathbf{N} \nsubseteq \mathbf{T} .
$$

Note:

If $A \subseteq B$ and $B \subseteq A$, then $A=B$, i.e., they are equal sets.

For example, Let $A=\{2,4,6\}$

$$
B=\{x: x \text { is an even natural number less than } 8\}
$$

Here $\mathrm{A} \subset \mathrm{B}$ and $\mathrm{B} \subset \mathrm{A}$.

Hence, we can say A = B

4. Intervals as subsets

Let $a, b \in R$ and $a<b$. Then the set of real numbers $\{y: a<y<b\}$ is called an open interval and is denoted by (\mathbf{a}, \mathbf{b}). All the points between a and b belong to the open interval (a, b) but a, b themselves do not belong to this interval.

The interval which contains the end points also is called closed interval and is denoted by
[\mathbf{a}, \mathbf{b}]. Thus $[\mathrm{a}, \mathrm{b}]=\{\mathrm{x}: \mathrm{a} \leq \mathrm{x} \leq \mathrm{b}\}$

We can also have intervals closed at one end and open at the other,
i.e., $[\mathbf{a}, \mathbf{b})=\{\mathrm{x}: \mathrm{a} \leq \mathrm{x}<\mathrm{b}\}$ is an open interval from a to b , including a but excluding b .
($\mathbf{a}, \mathbf{b}]=\{\mathrm{x}: \mathrm{a}<\mathrm{x} \leq \mathrm{b}\}$ is an open interval from a to b including b but excluding a .

On real number line, various types of intervals described above as subsets of R , are shown in the figure below:

For example, the set $\{x: x \in R,-5<x \leq 7\}$, written in set-builder form, can be written in the form of interval as $(-5,7]$ and the interval $[-3,5)$ can be as $\{x:-3 \leq x<5\}$.

Note : Here unfilled circle $\underline{\underline{\mathrm{O}}}$ indicate that point is not included and filled circle $\underline{\underline{O}}$ that point is included.

5. Power Set

We have defined a set as a collection of its elements. Thus if S is a set then the collection or family of all subsets of S is called the power set of S and it is denoted by $\mathbf{P}(\mathbf{S})$.

If $S=\{a, b\}$ then the power set of S is given by

$$
\mathrm{P}(\mathrm{~S})=\{\{\mathrm{a}\},\{\mathrm{b}\},\{\mathrm{a}, \mathrm{~b}\}, \Phi\}
$$

The null set or empty set Φ having no element of its own, is also an element of the power set; since, it is a subset of all sets.

The set S being a subset of itself is also as an element of the power set.

6. Number of Subsets of a given Set

If a set contains ' n ' elements, then the number of subsets of the set is 2^{n}.

For example:

If $\mathrm{A}\{1,3,5\}$, then write all the possible subsets of A . Find their numbers.

Solution:

The subset of A containing no elements is \emptyset

The subset of A containing one element each are $\{1\}\{3\}\{5\}$

The subset of A containing two elements each are $\{1,3\}\{1,5\}\{3,5\}$

The subset of A containing three elements is $\{1,3,5)$

Therefore, all possible subsets of A are $\},\{1\},\{3\},\{5\},\{1,3\},\{1,5\},\{3,5\},\{1,3,5\}$

Therefore, number of all possible subsets of A is 8 which is equal 2^{3}.

8. Cardinality of a set

The cardinality of a set is the numbers of elements in that set.

If S is a finite set, the symbol $\mathbf{n}(\mathbf{S})$ or stands for the number of elements of S.

For example: If $S=\{1,3,5,7,9\}$, then $n(S)=5$.

If $\mathrm{A}=\{1001,1002,1003, \ldots, 3000\}$, then $\mathrm{n}(\mathrm{A})=2000$.

If $T=\{$ letters in the English alphabet $\}$, then $n(T) \mid=26$.

The set $S=\{5\}$ is a one-element set because $n(S)=1$. It is important to distinguish between the number 5 and the set $S=\{5\}$:

$$
5 \in S \text { but }\{5\} \neq S
$$

Example 1: Consider the sets

$$
\varphi, A=\{1,3\}, B=\{1,5,9\}, C=\{1,3,5,7,9\}
$$

Insert the symbol \subset or $\not \subset$ between each of the following pair of sets:
(i) $\quad \varphi \ldots . . . B$
(ii) \quad..... B
(iii) \quad..... C
(iv) B.....C

Solution:

(i) $\quad \varphi \subset B$, as null set is a subset of every set.
(ii) $A \not \subset B$, as $3 \in A$ and $3 \notin B$.
(iii) $A \subset C$, as $1,3 \in A$ also belongs to C .
(iv) $B \subset C$ as each element of B is also an element of C .

Example 2: Let A, B and C be three sets. If $A \in B$ and $B \subset C$, is it true that $A \subset C$?

If not, give an example.
Solution: No.

$$
A=\{1\}, B=\{\{1\}, 2\} \text { and } C=\{\{1\}, 2,3\} . \text { Here } A \in B \text { as } A=\{1\} \text { and } B \subset C .
$$

But $A \not \subset C$ as $1 \in A$ and $1 \notin C$.

9. Summary

i. A set S is called a subset of another set T if every element of S is an element of T. This is written as $\mathrm{S} \subseteq \mathrm{T}$
ii. S is not a subset of T^{\prime} is written as $S \nsubseteq T$. This means that at least one element of S is not an element of T .
iii. If A and B are two sets, and every element of set A is also an element of set B, then B is called a superset of A and we write it as B \supseteq A.
iv. The set itself and the empty set are always subsets.
v. If $\mathrm{A} \subseteq \mathrm{B}$ and $\mathrm{B} \subseteq \mathrm{A}$, then $\mathrm{A}=\mathrm{B}$, i.e., they are equal sets of a set.
vi. The set of real numbers $\{y: a<y<b\}$ is called an open interval and is denoted by (a, b)
vii. The interval which contains the end points also is called closed interval and is denoted by $[\mathrm{a}, \mathrm{b}]$. Thus [$\mathrm{a}, \mathrm{b}]=\{\mathrm{x}: \mathrm{a} \leq \mathrm{x} \leq \mathrm{b}\}$
viii. $[\mathrm{a}, \mathrm{b})=\{\mathrm{x}: \mathrm{a} \leq \mathrm{x}<\mathrm{b}\}$ is an open interval from a to b , including a but excluding b .
ix. ($\mathrm{a}, \mathrm{b}]=\mathrm{x}: \mathrm{a}<\mathrm{x} \leq \mathrm{b}\}$ is an open interval from a to b including b but excluding a .
x. If S is a set then the collection or family of all subsets of S is called the power set of S and it is denoted by $\mathrm{P}(\mathrm{S})$.
xi. If a set contains ' n ' elements, then the number of subsets of the set is 2^{n}.
xii. The cardinality of a set is the numbers of elements in a set. If S is a finite set, the symbol $n(S)$ or stands for the number of elements of S.

