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1. Subsets of a set 

Sets of things are often further subdivided. For example, owls are a particular type of bird, so every 

owl is also a bird. We express this in the language of sets by saying that the set of owls is a subset 

of the set of birds. 

 

A set S is called a subset of another set T if every element of S is an element of T. This is written 

as  

  S ⊆ T (Read this as ‘S is a subset of T’.)  

 

The new symbol  ⊂ means ‘is a subset of’.  

 

Thus { owls }  ⊂  { birds } because every owl is a bird.  

 

Similarly, if A = { 2, 4, 6 } and B = { 0, 1, 2, 3, 4, 5, 6 }, then A  ⊂  B, because every element of 

A is an element of B.  

 

The sentence ‘S is not a subset of T’ is written as    

S ⊈ T 

This means that at least one element of S is not an element of T. For example,  



 

{ birds } ⊈ { flying creatures }  

because an ostrich is a bird, but it does not fly.  

 

Similarly, if A = { 0, 1, 2, 3, 4 } and B = { 2, 3, 4, 5, 6 }, then  

 

        A ⊈ B, because 0 ∈ A, but 0 ∉ B.  

 

The set itself and the empty set are always subsets.  

Any set S is a subset of itself, because every element of S is an element of S.  

 

For example: { birds }  ⊂ { birds } and  

{ 1, 2, 3, 4, 5, 6 } = { 1, 2, 3, 4, 5, 6 }.  

 

Furthermore, the empty set 𝛷 is a subset of every set S,  

 

2. Superset of a set 

If A and B are two sets, and every element of set A is also an element of set B, then B is called a 

superset of A and we write it as B ⊇ A. 

3. Equal Sets 

If A and B are two sets, then A is called the proper subset of B if A ⊆ B but B ⊈ A  

i.e., A ≠ B. The symbol ‘⊂’ is used to denote proper subset. Symbolically, we write A ⊂ B.  

Note: 

No set is a proper subset of itself.  

Null set or ∅  is a proper subset of every set.  

For example: A = {p, q, r}  

B = {p, q, r, s, t} 



 

Here A is a proper subset of B as all the elements of set A are in set B and also A ≠ B.  

Some of the obvious relations among these subsets are: 

 N ⊂ Z ⊂ Q, Q ⊂ R, T ⊂ R, N ⊄ T. 

 

Note: 

If A ⊆ B and B ⊆ A, then A = B, i.e., they are equal sets.  

 

For example, Let A = {2, 4, 6}   

     B = {x : x is an even natural number less than 8} 

Here A ⊂ B and B ⊂ A.  

Hence, we can say A = B  

 

4. Intervals as subsets 

Let a, b ∈  R and a < b. Then the set of real numbers { y : a < y < b} is called an open interval and 

is denoted by (a, b). All the points between a and b belong to the open interval (a, b) but a, b 

themselves do not belong to this interval.  

The interval which contains the end points also is called closed interval and is denoted by  

[ a, b ]. Thus [ a, b ] = {x : a ≤ x ≤ b}  

We can also have intervals closed at one end and open at the other,  

i.e., [ a, b ) = {x : a ≤ x < b} is an open interval from a to b, including a but excluding b. 

 ( a, b ] = { x : a < x ≤ b } is an open interval from a to b including b but excluding a. 



 

On real number line, various types of intervals described above as subsets of R, are shown in the 

figure below: 

 

For example, the set {x : x ∈  R, –5 < x ≤ 7}, written in set-builder form, can be written in the form 

of interval as (–5, 7] and the interval [–3, 5) can be as {x : –3 ≤ x < 5}. 

Note : Here unfilled circle O indicate that point is not included and filled circle O that point is 

included. 

5. Power Set 

We have defined a set as a collection of its elements. Thus if S is a set then the collection or family 

of all subsets of S is called the power set of S and it is denoted by P(S). 

If S ={ a, b } then the power set of S is given by  

      P(S) = {{a}, {b}, {a, b}, 𝛷} 

The null set or empty set 𝛷 having no element of its own, is also an element of the power set; 

since, it is a subset of all sets. 

The set S being a subset of itself is also as an element of the power set. 

6. Number of Subsets of a given Set 

If a set contains ‘n’ elements, then the number of subsets of the set is 2n. 

For example: 

 If A {1, 3, 5}, then write all the possible subsets of A. Find their numbers. 

Solution: 



 

The subset of A containing no elements is Ø 

The subset of A containing one element each are {1} {3} {5} 

The subset of A containing two elements each are {1, 3} {1, 5} {3, 5} 

The subset of A containing three elements is {1, 3, 5) 

Therefore, all possible subsets of A are { }, {1}, {3}, {5}, {1, 3}, {1,5}, {3, 5}, {1, 3, 5} 

Therefore, number of all possible subsets of A is 8 which is equal 23. 

8. Cardinality of a set 

The cardinality of a set is the numbers of elements in that set.  

If S is a finite set, the symbol n(S) or stands for the number of elements of S.  

For example: If S = { 1, 3, 5, 7, 9 }, then n(S) = 5.  

          If A = { 1001, 1002, 1003, …, 3000 }, then n(A) = 2000.  

          If T = { letters in the English alphabet }, then n(T)| = 26.  

The set S = { 5 } is a one-element set because n(S) = 1. It is important to distinguish between the 

number 5 and the set S = { 5 }:  

5 ∈ S but {5} ≠ S. 

 

 

Example 1: Consider the sets 

                      , {1,3}, {1,5,9}, {1,3,5,7,9}A B C     

Insert the symbol or  between each of the following pair of sets: 



 

(i) ......B  

(ii) .....A B  

(iii) .....A C  

(iv) .....B C  

Solution:  

(i) B  , as null set is a subset of every set. 

(ii) , 3 3 .A B as A and B    

(iii) , 1,3A C as A  also belongs to C. 

(iv) B C as each element of B is also an element of C. 

Example 2: Let A, B and C be three sets. If A Band B C  , is it true that A C ?  

                      If not, give an example. 

Solution:  No. 

               {1}, {{1},2} {{1},2,3}A B and C   . Here {1}A B as A   and B C . 

                But 1 1A C as A and C   . 

9. Summary 

i.  A set S is called a subset of another set T if every element of S is an element of T. This 

is written as  S ⊆ T 

ii. S is not a subset of T’ is written as S ⊈ T. This means that at least one element of S is not 

an element of T. 

iii. If A and B are two sets, and every element of set A is also an element of set B, then B is 

called a superset of A and we write it as B ⊇ A. 

iv. The set itself and the empty set are always subsets. 



 

v. If A ⊆ B and B ⊆ A, then A = B, i.e., they are equal sets of a set. 

vi. The set of real numbers { y : a < y < b} is called an open interval and is denoted by (a, b) 

vii. The interval which contains the end points also is called closed interval and is denoted by 

[ a, b ]. Thus [ a, b ] = {x : a ≤ x ≤ b}  

viii. [ a, b ) = {x : a ≤ x < b} is an open interval from a to b, including a but excluding b. 

ix.  ( a, b ] =  x : a < x ≤ b } is an open interval from a to b including b but excluding a. 

x. If S is a set then the collection or family of all subsets of S is called the power set of S 

and it is denoted by P(S). 

xi. If a set contains ‘n’ elements, then the number of subsets of the set is 2n. 

xii. The cardinality of a set is the numbers of elements in a set. If S is a finite set, the 

symbol n(S) or stands for the number of elements of S. 

 

 


