1. Details of Module and its Structure

Module Detail			
Subject Name	Chemistry		
Course Name	Chemistry 03 (Class XII, Semester 01)		
Module Name/Title	p-block Elements (Group 15 elements): Part 2		
Module ID	lech_10702		
Pre-requisites	Knowledge about electronic configuration of elements of this block and variation of Atomic size, Ionization Enthalpy, Electron Gain Enthalpy and Electronegativity within the groups in the block, shielding effect, chemical bonding		
Objectives	 After going through this module, the learners will be able to understand the following: 1. Allotropes of phosphorus, 2. Hydride of phosphorus 3. Halides of Phosphorus 4. Oxoacids of phosphorus. 		
Keywords	Phosphorus, hydrides, halides, oxides, oxoacids, allotropes, group 15		

2. Development Team

Role	Name	Affiliation	
National MOOC Coordinator (NMC)	Prof. Amarendra P. Behera	CIET, NCERT, New Delhi	
Program Coordinator	Dr. Mohd. Mamur Ali	CIET, NCERT, New Delhi	
Course Coordinator (CC) / PI	Prof. Alka Mehrotra Prof. R. K. Parashar	DESM, NCERT, New Delhi DESM, NCERT, New Delhi	
Course Co-Coordinator / Co-PI	Dr. Aerum Khan	CIET, NCERT, New Delhi	
Subject Matter Expert (SME)	Dr. Karuna Gupta	Ahlcon International School, Mayur Vihar, Phase -1, Delhi	
Review Team	Dr. Manisha Jain Dr. Aerum Khan	Acharya Narendra Dev College (University of Delhi), New Delhi CIET, NCERT, New Delhi	
Language Editor	Dr. Manisha Jain	Acharya Narendra Dev College (University of Delhi), New Delhi	
	Dr. Aerum Khan	CIET, NCERT, New Delhi	

Table of Contents:

- 1. Introduction
- 2. Phosphorus- allotropes and their properties
- 3. Hydride of phosphorus Phosphine
- **4.** Halides of phosphorus
- 5. Oxoacids of phosphorus
- 6. Summary

1. Introduction

Phosphorus is the second element in group 15 and has a valence electronic configuration of $3s^23p^3$ which is the configuration of stable half filled orbitals. Like nitrogen, phosphorus is a non metal. It has only one stable isotope ¹⁵P. Though valence configuration of phosphorus is similar to nitrogen, the presence of vacant 3d orbitals in phosphorus helps it in achieving higher covalency and hence it forms compounds beyond those known for nitrogen. Differences in the properties of nitrogen and phosphorus are in the table 2.1.

 Table 2.1 : Differences in nitrogen and phosphorus

Nitrogen	Phosphorus	
Nitrogen has maximum covalency of	Phosphorus can expand its covalency	
four	beyond 4 upto six by utilizing vacant 3d	
	orbitals in its valence shell	
Nitrogen can from very stable pπ-pπ	Phosphorus tends to form $d\pi$ -p π	
multiple bonds with small 2p orbitals. It	multiple bonds by overlapping its vacant	
forms stable N≡N, N=N. N=C and N=O	d orbitals with p orbitals of other atom.	
bonds.	It forms stable P=O bond	
N-N single bond is not stable because of	P-P single bond with reduced lone pair	
lone pair lone pair repulsions between	lone pair repulsions is more stable than	
two nitrogen atoms	N-N single bond.	

2. Phosphorus- allotropes and their properties

Phosphorus exists in many allotropic modifications that reflect the variety of ways of achieving coordination, the important ones being white, red and black. The differences in three allotropes are enlisted in table 2.2.

 Table 2.2. Allotropes of Phosphorus and their structure and properties

White Phosphorus	Red Phosphorus	Black phosphorus	
White phosphorus is obtained	Red phosphorus is obtained by	Black phosphorus (α-form)	

when phosphate rock is	heating white phosphorus in an	is formed when red		
heated with coke and sand in	inert atmosphere at 573K for	phosphorus (β-form) is		
an electric furnace at 1773 K	several days	heated in a sealed tube at		
		803 K. Black phosphorus		
$3Ca_3(PO_4)_2 + 6 SiO_2 \rightarrow$		is prepared by heating white		
$6 \text{ CaSiO}_3 + P_4 O_{10}$		phosphorus at 473 K under		
$P_4O_{10} + 10C \rightarrow 10CO + P_4$		high pressure.		
It consists of discrete	It is polymeric, consisting of	Black phosphorus has		
tetrahedral P ₄ molecule	chains of P ₄ tetrahedral linked	layered structure in which		
	together	each phosphorus atom is		
		covalently bonded to three		
		neighbouring phosphorus		
White phosphorus is less	In red phosphorus, P ₄	atom. Here all phosphorus atoms		
stable and therefore, most	tetrahedrons link to each other	are linked to each other to		
reactive allotrope of	to form polymeric structure. In			
	this process some of the P-P	give a highly polymerised		
phosphorus. P ₄ has a tetrahedral structure in which	-	layer like structure. No		
	bond angles in P_4 tetrahedrons	angle strain is present in the		
	cleave, relieving some of the	whole layer and the		
occupied by phosphorus	angle strain and imparting	allotrope becomes		
atoms. The molecule has a	stability to the polymer. Red P	thermodynamically the		
high angular strain as all	is less reactive than white	most stable form.		
P-P-P bond angles are only 60°.	phosphorus.			
P 60 ⁷ P	P P P P P P P P P			
		Image source:		
		https://en.wikipedia.org/wik		
		<u>i/ Phosphorus#/</u>		
White phosphorus is a	It is hard crystalline solid with	It has black metallic lustre		
translucent white waxy solid	iron grey lustre. It is non-			
(α -form). It is poisonous,	poisonous in nature. It is			
insoluble in water but soluble	insoluble in water as well as			
in carbon disulphide and	organic solvent such as CS_2			

glows in dark			
(chemiluminescence). It			
burns in air to produce dense			
white fumes of phosphorus			
pentaoxide.			
White phosphorus is stored	Red phosphorus is quite stable	Black phosphorus is stable	
under water to protect it from	in air.	in air and can be ignited	
the air. It burns in air to		only with difficulty.	
produce dense white fumes			
of phosphorus pentaoxide.			

3. Hydride of Phosphorus – Phosphine (PH₃)

3.1. Preparation

Phosphine is prepared by the reaction of calcium phosphide with water or dilute HCl.

 $Ca_{3}P_{2} + 6H_{2}O \rightarrow 3Ca(OH)_{2} + 2PH_{3}$ $Ca_{3}P_{2} + 6HCl \rightarrow 3CaCl_{2} + 2PH_{3}$

In the laboratory, it is prepared by heating white phosphorus with concentrated NaOH solution in an inert atmosphere of CO_2 .

$$\begin{array}{rll} P_4 \left(s \right) \ + \ 3NaOH \left(aq \right) \ + \ 3H_2O(l) & \rightarrow & \ 3NaH_2PO_2 \left(aq \right) & + & \ PH_3(g) \\ & & \ Sodium \ hypophosphite & \ Phosphine \end{array}$$

When pure, it is non flammable but becomes inflammable owing to the presence of P_2H_4 or P_4 vapours. To purify it from the impurities, it is absorbed in HI to form phosphonium iodide (PH₄I) which on treating with KOH gives off phosphine.

 $PH_{3}(g) + HI(g) \rightarrow PH_{4}^{+}I^{-}(s)$ $PH_{4}^{+}I^{-}(s) + KOH(aq) \rightarrow KI(aq) + H_{2}O(l) + PH_{3}(g)$

3.2. Properties

It is a colourless gas with rotten fish smell and is highly poisonous. It explodes in contact with traces of oxidising agents like HNO₃, Cl₂ and Br₂ vapours. It is only slightly soluble in water and is not associated like NH₃ because of decreased bond polarity. The solubility of

phosphene in organic solvents is high. The solution of PH₃ in water decomposes in presence of light giving red phosphorus and H₂. When absorbed in copper sulphate or mercuric chloride solution, the corresponding phosphides (containing phosphorus in rare -3 oxidation state) are obtained.

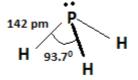
 $3CuSO_4 + 2PH_3 \rightarrow Cu_3P_2 + 3H_2SO_4$ Copper phosphide

 $3HgCl_2 + 2PH_3 \rightarrow Hg_3P_2 + 6HCl$ Mercuric phosphide

Phosphene is very weakly basic though it gives phosphonium compounds with acids e.g.,

 $PH_3(g) + HBr(g) \rightarrow PH_4^+Br(s)$

The pure gas oxidises in air at 150 °C but when contaminated with diphosphine P_2H_4 , it is spontaneously flammable.


 $PH_3 + 2O_2 \rightarrow H_3PO_4$

Phosphene is a strong reducing agent and reduces many metal salts to metals.

3.3. Structure

Phosphene (Fig.2.1) has pyramidal geometry with three P-H bond pairs and one lone pair on phosphorus atom. The H-P-H bond angle is 93.7[°].

Fig.2.1. Structure of phosphene

3.4. Uses

The spontaneous combustion of phosphine is technically used in *Holme's signals*. Containers containing calcium carbide and calcium phosphide are pierced and thrown in the sea when the gases evolved burn and serve as a signal. It is also used in *smoke screens*.

4. Halides of Phosphorus

Phosphorus reacts with halogens to form halides of two different compositions PX₃ and PX₅. The most important halides are chlorides.

4.1. Phosphorus trichloride

4.1.1. Preparation

It is obtained by passing dry chlorine over heated white phosphorus.

 $P_4(s) + 6Cl_2(g) \rightarrow 4 PCl_3(l)$

It is also obtained by the action of thionyl chloride with white phosphorus.

 $P_4(s) + 8SOCl_2(l) \rightarrow 4PCl_3(l) + 4SO_2(g) + 2S_2Cl_2(g)$

Thionyl chloride

4.1.2. Properties

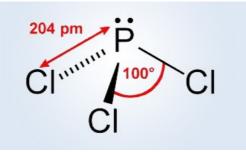


Fig. 2.2. Structure of phosphorus trichloride (Image source: <u>https://en.wikipedia.org/wiki/Phosphorus_trichloride#/</u>)

Phosphorus trichloride has a pyramidal shape (Fig.2.2) with *sp*³ hybridisation of phosphorus atom. There are three bond pairs (P-Cl bond) and one non bonding electron pair on phosphorus atom. The Cl-P-Cl bond angle is 100°.

It is a colourless oily low boiling liquid (b.pt. 349 K) which undergoes a violent hydrolysis with water to give phosphorus acid.

 $PCl_3 + 3H_2O \rightarrow H_3PO_3 + 3HCl$

It reacts with organic compounds containing –OH group and –COOH group to give chlorinated derivatives.

 $3RCO (OH) + PCl_3 \rightarrow 3RCOCl + H_3PO_3$ $3R (OH) + PCl_3 \rightarrow 3RCl + H_3PO_3$

4.2. Phosphorus Pentachloride (PCl₅)

4.2.1. Preparation

Phosphorus pentachloride is prepared by the reaction of white phosphorus with excess of dry chlorine.

 $P_4(s) + 10Cl_2(g) \rightarrow 4PCl_5(s)$

It can also be prepared by the action of SO₂Cl₂ (sulphuryl chloride) on white phosphorus.

 $P_4(s) + 10SO_2Cl_2 \rightarrow 4PCl_5(s) + 10SO_2(g)$

4.2.2. Properties

PCl₅ is moisture sensitive yellowish white powder. In moist air, it hydrolyses to phosphoryl chloride, POCl₃ which finally gets completely hydrolysed to phosphoric acid.

 $\begin{array}{l} PCl_5 + H_2O \rightarrow POCl_3 + 2HCl \\ POCl_3 + 3H_2O \rightarrow H_3PO_4 + 3HCl \\ or \\ PCl_5 + H_2O \rightarrow H_3PO_4 + 5HCl \\ (excess) \end{array}$

When heated, it sublimes but decomposes on stronger heating into PCl₃ and Cl₂

 $\begin{array}{rcl} \Delta \\ PCl_5 & \rightarrow & PCl_3 + & Cl_2 \end{array}$

• Like PCl₃ it also reacts with organic compounds containing –OH and –COOH group converting them to their chloro derivatives.

 $\begin{array}{rcl} CH_{3}CH_{2}OH & + & PCl_{5} \rightarrow & CH_{3}CH_{2}Cl & + & POCl_{3} & + & HCl \\ Ethanol & & Chloroethane \end{array}$

 $\begin{array}{rcl} CH_{3}COOH & + & PCl_{5} & \rightarrow & CH_{3}COCl & + & POCl_{3} & + & HCl \\ Acetic acid & & & Acetyl chloride \end{array}$

• It oxidises and chlorinates finely divided metals also on heating to give corresponding chlorides.

 $\begin{array}{rcl} \Delta \\ 2 \mathrm{Ag}\left(s \right) &+ & \mathrm{PCl}_{5} & \rightarrow & 2 \mathrm{AgCl} &+ \mathrm{PCl}_{3} \end{array}$

4.2.3. Structure

 PCl_5 has a trigonal bipyramidal geometry (Fig.2.3) with sp^3d hybridisation on phosphorus atom. Equatorial P-Cl bonds are shorter than the axial P- Cl bonds. Two different Cl-P-Cl bond angles observed in the molecule are 90° (involving one axial and one equatorial Cl atom) and 120° (involving both equatorial Cl atoms).

 PCl_5 is molecular in the gaseous phase, ionic in the crystalline phase, $[PCl_4]^+[PCl_6]^-$ and either molecular or ionically dissociated in solution depending on the nature of the solvent. In $[PCl_4]^+[PCl_6]^-$, the cation $[PCl_4]^+$ is tetrahedral and the anion, $[PCl_6]^-$ is octahedral.

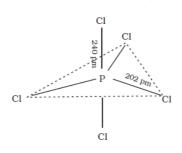


Fig.2.3. Phosphorus pentachloride

5. Oxoacids of Phosphorus

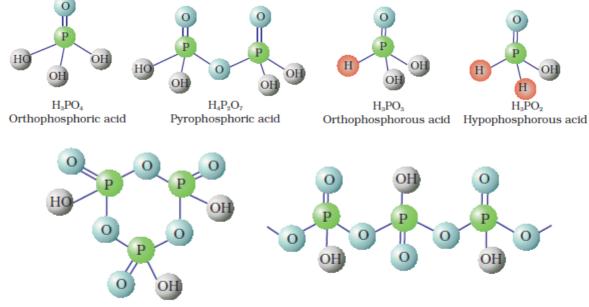
All the oxoacids of phosphorus contain atleast one P=O bond and at least one P-OH bond. Some oxoacids of phosphorus also contain P-P bond or P-H bond but not both in the same acid. They are generally present in oxoacids which contain P in oxidation state less than +5.

The oxoacids in +3 oxidation state undergo disproportionation reaction on hetaing

 $\begin{array}{cccc} \Delta & & & \\ & 4H_3PO_3 & \rightarrow & PH_3 & + & 3H_3PO_4 \end{array}$ Phosphorus acid Phosphine orthophosphoric acid

The acids containing P–H bond have strong reducing properties. Thus, hypophosphorous acid, H₃PO₂ , is a good reducing agent as it contains two P–H bonds and reduces AgNO₃ to metallic silver.

 $4 \text{ AgNO}_3 (aq) + 2H_2O (l) + H_3PO_2 (aq) \rightarrow 4Ag (s) + 4HNO_3 (aq) + H_3PO_4 (aq)$


 H_3PO_3 also act as a reducing agent though weaker than H_3PO_2 because it contains only one P-H bond as compared to two in H_3PO_2 .

The P-H bonds do not contain acidic hydrogen and hence do not release hydrogen as H⁺ ion. Reducing property is observed for these acids by loss of hydrogen as [H] atom. Only those H atoms which are attached with oxygen in P–OH group are ionisable and makes the compound acidic. Thus, H_3PO_3 and H_3PO_4 are dibasic and tribasic, respectively as the structure of H_3PO_3 has two P–OH bonds and H_3PO_4 three P-OH bonds. Structure of oxoacid are shown in Fig.2.4. and their oxidation states are given in table 2.3.

Phosphorus as phosphate esters play an important role in life processes. These phosphate containing biomolecules are DNA, RNA, and cyclic AMP. The energy giving reactions in bioprocesses involve a transfer of phosphate groups between ADP and ATP.

Name	Formula	Oxidation state of phosphorus	Characteristic bonds and their number	Preparation
Hypophosphorous (Phosphinic)	H_3PO_2	+1	One P – OH Two P – H One P = O	white \mathbf{P}_4 + alkali
Orthophosphorous (Phosphonic)	H ₃ PO ₃	+3	Two P – OH One P – H One P = O	$\mathrm{P_2O_3} + \mathrm{H_2O}$
Pyrophosphorous	$\mathrm{H_4P_2O_5}$	+3	Two P – OH Two P – H Two P = O	$PCl_3 + H_3PO_3$
Hypophosphoric	$H_4P_2O_6$	+4	Four P – OH Two P = O One P – P	red \mathbf{P}_4 + alkali
Orthophosphoric	H_3PO_4	+5	Three P – OH One P = O	P_4O_{10} + H_2O
Pyrophosphoric	$H_4P_2O_7$	+5	Four P – OH Two P = O One P – O – P	heat phosphoric acid
Metaphosphoric*	(HPO ₃) _n	+5	Three $P - OH$ Three $P = O$ Three $P - O - P$	phosphorus acid + Br_2 , heat in a sealed tube

Table 2.3: Oxoacids of phosphorus with their oxidation state

Cyclotrimetaphosphoric acid, (HPO₃)₃

Polymetaphosphoric acid, (HPO₃)_n

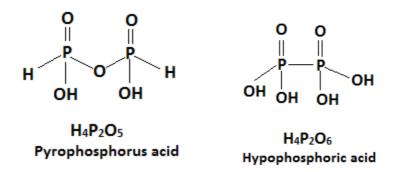


Fig 2.4. Solution state structures of oxoacids of phosphorus

Pure aqueous orthophosphoric acid and its salts -phosphates, find applications in food, detergent and toothpaste industries. When highly diluted, the aqueous acid does not have any specific odour and is non toxic. It is extensively used to impart sour or tart taste to carbonated soft drinks.

5. Summary

Phosphorus plays crucial role in the biochemistry of all living beings. It is a constituent element of the bones and energy giving molecules in the body. As phosphate fertilisers it has its importance in plant life as well. Phosphorus exists in many allotropic modifications, the common ones being white phosphorus, red phosphorus and black phosphorus. White phosphorus is the most reactive allotrope and gives rise to faint greenish glow on oxidation in air. Phosphorus forms stable binary compounds with metals, hydrogen, oxygen and halogens. These are phosphides, phosphine, halides and oxoacids. The compounds formed contain phosphorus in -3, +3 and +5 oxidation states. It forms trihalides and pentahalides out of which mainly chlorides are important. Phosphorus forms large number of oxoacids in which oxidation states of phosphorus range +1 to +5, with variable types of bonds like P=O, P-OH, P-H and P-P bonds. The number of these bonds ,differ from one type of oxoacid to the other. The oxoacids containing P-H bonds are reducing in nature. The presence of ionisable O-H groups, make these compounds acidic in nature.