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1. Introduction

In  the  previous  module  you  have  learned  that  when  there  is  a  regular  arrangement  of

constituent particles in the solid, it is known as crystalline solid. In this module you will be

studying  about  diagramatic  representation  of  the  regular  arrangement  of  crystal  as  crystal

lattice followed by types of packing and packing efficiency.

2. Unit Cell and Crystal Lattice

The main characteristic of crystalline solids is a regular and repeating pattern of constituent

particles.  If  the  three  dimensional  arrangement  of  constituent  particles  in  a  crystal  is

represented diagrammatically, in which each particle is depicted as a point, the arrangement is

called crystal lattice. Thus, a regular three dimensional arrangement of points in space is

called a crystal lattice. A portion of a crystal lattice is shown in Fig. 1

Fig. 1: A portion of a three dimensional cubic lattice and its unit cell.

There are only 14 possible three dimensional lattices. These are called Bravais Lattices (after

the French mathematician who first described them). 

The following are the characteristics of a crystal lattice:

(a) Each point in a lattice is called lattice point or lattice site.

(b) Each point in a crystal lattice represents one constituent particle which may be an atom, a

molecule (group of atoms) or an ion.



(c) Lattice points are joined by straight lines to bring out the geometry of the lattice. Unit cell

is the smallest portion of a crystal lattice which, when repeated in different directions,

generates the entire lattice.

A unit cell is characterised by:

(i) Its dimensions along the three edges, a, b and c. These edges may or may not be mutually

perpendicular.

(ii) Angles between the edges, α (between b and c) β (between a and c) and γ (between a and

b). Thus, a unit cell is characterised by six parameters, a, b, c, α, β and γ.

Fig. 2: Illustration of parameters of a unit cell.

2.1 Types of Unit Cells

Unit cells can be broadly divided into two categories, i) Primitive and ii) Centred unit cells.

(a) Primitive Unit Cells : When constituent particles are present only on the corner positions

of a unit cell, it is called a primitive unit cell.

(b) Centred Unit Cells : When a unit cell contains one or more constituent particles present at

positions other than corners in addition to those at  corners,  it  is  called a centred unit  cell.

Centred unit cells are of three types:

(i) Body-Centred Unit Cell: It contains one constituent particle (atom, molecule or ion) at its body-

centre and eight particles at its corners.

(ii)  Face-Centred Unit Cell: It contains one constituent particle present at the centre of each

face, along with eight particles at its corners.

(iii) End-Centred Unit Cell: In this one constituent particle is present at the centre of any two

opposite faces along with eight particles at its corners.

In all, there are seven types of primitive unit cells as shown in Fig. 3.



Fig. 3: Seven primitive unit cells in crystals

The characteristics of the seven crystal systems  along with the centred unit cells they can form

have been listed in Table 1.

Table 1: Seven Primitive Unit Cells and their Possible Variations as Centred Unit Cells

Crystal
System

Possible  Variations Axial  distances  or
edge lengths

Axial angles Examples

Cubic Primitive,  Body-
centred,  Face-  centred

a  = b = c α = β = γ = 90◦ NaCl, Zinc blende,
Cu

Tetragonal Primitive,  Body-
centred

a = b ≠ c α = β = γ = 90◦ White  tin,  SnO ,₂
TiO , CaSO₂ ₄

Orthorhombic Primitive,  Body-
centred,  Face   centred,
End- centred

a ≠ b ≠ c α = β = γ = 90◦ Rhombic  sulphur,
KNO , BaSO₃ ₄

Hexagonal Primitive a = b ≠ c α = β = 90◦
γ  = 120◦

Graphite,  ZnO,
CdS

Rhombohedral
or Trigonal 

Primitive a = b = c α = β = γ ≠ 90◦ Calcite  (CaCO ),₃
HgS (cinnabar)

Monoclinic Primitive, End- centred a ≠ b ≠ c α = γ = 90◦
β ≠ 90◦

Monoclinic
sulphur,
Na SO . 10H O₂ ₄ ₂

Triclinic Primitive a ≠ b ≠ c α ≠ β ≠ γ ≠ 90◦ K Cr O ,  CuSO .₂ ₂ ₇ ₄
5H O,   H BO₂ ₃ ₃



Fig. 4: Unit Cells of 14 Types of Bravais Lattices



2.2 Number of Atoms in a Unit Cell

We know that any crystal lattice is made up of a very large number of unit cells and every

lattice point is occupied by one constituent particle (atom, molecule or ion). Let us now work

out what portion of each particle belongs to a particular unit cell.

We shall consider three types of cubic unit cells and for simplicity assume that the constituent

particle is an atom.

Primitive Cubic Unit Cell

Primitive cubic unit cell has atoms only at its corner. Each atom at a corner is shared between
eight adjacent unit cells as shown in Fig.5,  four unit cells in the same layer and four unit cells

of the upper (or lower) layer. Therefore, only
1
8

 th of an atom (or molecule or ion) actually

belongs to a particular unit cell. 

Fig. 5: In a simple cubic unit cell, each corner atom is shared between 8 unit cells.

In Fig.6,  a primitive cubic unit  cell  has been depicted in three different  ways.  Each small

sphere in Fig. 6 (a) represents only the centre of the particle occupying that position and not its

actual size. Such structures are called open structures. The arrangement of particles is easier

to follow in open structures. Fig. 6 (b)depicts space-filling representation of the unit cell with

actual particle size and  Fig. 6. (c) shows the actual portions of different atoms present in a

cubic unit cell. In all, since each cubic unit cell has  8 atoms on its corners, and  each corner

atom contributes 1/8th portion to the unit cell

the total number of atoms in one unit cell is 8×
1
8
=1 atom.

Fig.  6:  A primitive cubic  unit  cell  (a)  open  structure  (b)  space-filling  structure  (c)  actual  portions of  atoms
belonging to one unit cell.



Body-centred cubic (bcc) unit cell

A body-centred cubic unit cell has an atom at each of its corners and also one atom at its body

centre.  Fig.  7  depicts  (a)  open structure (b)  space  filling  model  and (c)  the  unit  cell  with

portions of atoms actually belonging to it. It can be seen that the  atom at the body centre

wholly belongs to the unit cell in which it is present.  Thus in a body-centered cubic (bcc)

unit cell:

(i) 8 corners ×
1
8

per corner atom =8 ×
1
8
=1atom

(ii) 1 body centre atom = 1 × 1 = 1 atom

 Total number of atoms per unit cell = 2 atoms⸫

Fig.7:  A body-centred cubic unit cell (a) open structure (b) space filling structure (c) actual portions of atoms
belonging to one unit cell.

Face- Centred Cubic Unit Cell

A face-centred cubic (fcc) unit cell contains atoms at all the corners and at the centre of all the

faces of the cube. It can be seen in Fig. 8 that each atom located at the face-centre is shared

between two adjacent unit cells and only½ of each atom belongs to a unit cell. Fig. 9 depicts (a)

open structure (b) space-filling model and (c) the unit  cell  with portions of atoms actually

belonging to it. Thus, in a face-centred cubic (fcc) unit cell:

(i) 8 corners atoms ×
1
8

 atom per unit cell =8 ×
1
8
=1atom

(ii) 6 face-centred atoms ×
1
2

 atom per unit cell = 6 ×
1
2

 = 3 atoms

∴Total number of atoms per unit cell = 4 atoms



Table 2 summarizes the number of atoms present in one unit cell of three different types of
cubic unit cell.

Fig. 8: An atom at face centre of unit cell is shared between 2 unit cells

Fig 9: A face-centred cubic unit cell (a) open structure (b) space filling structure (c) actual portions of atoms
belonging to one unit cell.

Table 2: Number of atoms  per unit cell (Z):
Type of unit cell Number  of

atoms
at corners

Number  of
atoms 
in  centre  of
faces

Number  of
atoms 
at  the
centre  of
unit cell

Total
(Z)

Primitive cube 8 x 1 / 8 = 1 0 0 1
Body Centered Cube
(B.C.C)

8 x 1 / 8 = 1 0 1 2

Face Centered Cube
(F.C.C)

8 x 1 / 8 = 1 6 x 1 / 2 = 3 0 4

3. Close Packed Structures

In solids, the constituent particles are closely packed, leaving the minimum vacant space. Let

us  consider  the  constituent  particles  as  identical  hard  spheres  and  build  up  the  three

dimensional structure in three steps.

(i) Close Packing in One Dimension:

There is only one way of arranging spheres in a one dimensional close packed structure, that is

to arrange them in a row and touching each other (Fig. 10)



Fig. 10: Close packing of spheres in one dimension

The number of nearest neighbours of a particle is called its coordination number. Thus, in one

dimensional close packed arrangement, the coordination number is 2.

(ii) Close Packing in Two Dimensions:

Two dimensional close packed structure can be generated by stacking (placing) the rows of

close packed spheres. It can be generated  in two different ways.

(a)  Square  close  packing:  The  second  row  may  be  placed  in  contact  with  the  first  one

such that the spheres of the second row are exactly above those of the first row. The spheres of

the two rows are aligned horizontally as well as vertically. If we call the first row as ‘A’ type

row, the second row being exactly the same as the first one, is also of ‘A’ type. Similarly, we

may place more rows to obtain AAA type of arrangement as shown in Fig. 11.

Fig. 11: Square close packing of spheres in two dimensions 

In this  arrangement,  each  sphere  is  in  contact  with  four  of  its  neighbours.  Thus,  the two

dimensional  coordination  number  is  4.  Also,  if  the  centres  of  these  4  immediate

neighbouring spheres are joined, a square is formed. Hence this packing is called square close

packing.

(b) Hexagonal close packing:  The second row may be placed above the depressions of the

first row. If the arrangement of spheres in the first row is called ‘A’ type, the one in the second

row is different and may be called ‘B’ type. This arrangement is of ABAB type as shown in

Fig. 12.

Fig. 12: Hexagonal close packing of spheres in two dimensions 



In  this  arrangement,  each  sphere  is  in  contact  with  six  of  its  neighbours  and  thus  the

coordination number is 6. The centres of these six spheres are at the corners of a regular

hexagon  hence this packing is called two dimensional hexagonal close packing. 

The hexagonal close packing structure is a more efficient close packing structure than square

close packing structure. 

In the two dimensional structures there are empty spaces which are known as  voids. In two

dimensional hexagonal close packing these voids are triangular in shape. Therefore, these voids

are called triangular voids. The triangular voids are of two different types. In one row, the apex

of the triangles are pointing upwards and in the next layer downwards. 

(iii) Close Packing in Three Dimensions :

Three dimensional close packed structure can be generated by placing two dimensional close

packing layers one over the other. Since there are two types of two dimensional close packing

structures,  their  stacking  will  result  in  different  types  of  three  dimensional  structures.

hexagonal close packed layers one over the other.

(i) Three dimensional close packing from two dimensional square close-packed layers: While

placing the second square close-packed layer above the first we follow the same rule that was

followed when one row was placed adjacent to the other. The second layer is placed over the

first layer such that the spheres of the upper layer are exactly above those of the first layer. In

this  arrangement  spheres  of  both  the  layers  are  perfectly  aligned  horizontally  as  well  as

vertically as shown in Fig. 13.

Similarly, we may place more layers one above the other. If the arrangement of spheres in the

first layer is called ‘A’ type, all the layers have the same arrangement. Thus this lattice has

AAA.... type pattern. The lattice thus generated is the simple cubic lattice, and its unit cell is

the primitive cubic unit cell (See Fig. 6).

Fig. 13: Simple cubic lattice formed by A A A .... arrangement



(ii) Three dimensional close packing from two dimensional hexagonal close packed layers:

Three dimensional close packed structure can be generated by placing second layer over the

first layer and then placing the third layer over the second layer. The placement of the third

layer can be done in two ways giving rise to different types of three dimensional lattices. So,

three dimensional hexagonal close packing involves three steps:

(a)In the first layer the spheres are arranged in a hexagonal manner in which each sphere is    in

contact with six other spheres.

(b) In the formation of second layer the spheres of the second layer fit into the depression of

the first hexagonal close packed layer called ‘A’. The depressions are actually the triangular

voids of the two dimensional layer. As seen earlier, the triangular voids are of two types and

they lie alternate to each other. To achieve a close packed structure, the spheres of the second

layer occupy triangular voids (depressions) of one type.  Since the spheres of the second layer

are aligned differently, let us call the second layer as B. Wherever a sphere of the second layer

is above the void of the first layer (or vice versa), a tetrahedral void is formed. These voids are

called tetrahedral voids because a tetrahedron is formed when the centres of these four spheres

are joined. They have been marked as ‘T’ in Fig. 14 . One such void has been shown separately

in Fig. 15. It can be observed from Fig. 14 that not all the triangular voids of the first layer are

covered by the spheres of the second layer.  In such places, the triangular voids in the second

layer are above the triangular voids in the first layer, and the triangular shapes of these voids do

not  overlap.  One  of  them  has  the  apex  of  the  triangle  pointing  upwards  and  the  other

downwards. These voids have been marked as ‘O’ in Fig.14. Such voids are surrounded by six

spheres and are called octahedral voids. One such void has been shown separately in Fig. 15.

The number of tetrahedral and octahedral voids depend upon the number of spheres involved in

close packed structure.

Fig. 14: A stack of two layers of close packed spheres and voids generated in them. T = Tetrahedral void; O =
Octahedral void 



Fig 15:  Tetrahedral and octahedral voids (a) top view (b) exploded side view and (c) geometrical shape of the
void.

Let the number of close packed spheres be N, then,

The number of octahedral voids generated = N

The number of tetrahedral voids generated = 2N

(c) Placing third layer over the second layer: For the third layer, there are two possibilities:

i)  Covering Tetrahedral Voids: Tetrahedral voids of the second layer may be covered by the

spheres of the third layer. In this case, the spheres of the third layer are exactly aligned with

those of the first layer. Thus, the pattern of spheres is repeated in alternate layers. This pattern

is often written as ABAB ....... pattern. This structure is called hexagonal close packed (hcp).

Fig. 16:(a) Hexagonal cubic close-packing exploded view showing stacking of layers of spheres (b) four layers

stacked in each case and (c) geometry of packing. 



(ii)  Covering Octahedral Voids: The third layer may be placed above the second layer in a

manner  such that  its  spheres  cover  the  octahedral  voids.  When placed in  this  manner,  the

spheres of the third layer are not aligned with those of either the first or the second layer. This

arrangement is called “C’ type. Only when fourth layer is placed, its spheres are aligned with

layer A. This leads to the arrangement ABCABCABC………..Theresulting three dimensional

structure is calledcubic closed packed (ccp) (or) face centred cubic (fcc) structure.

Fig. 17(a) ABCABC... arrangement of layers when octahedral void is covered (b) fragment of structure formed by

this arrangement resulting in cubic closed packed (ccp) or face centred cubic (fcc) structure. 

4.1Formula of a Compound and Number of Voids Filled

Earlier in this module, we have learnt that when particles are close packed resulting in either

ccp or hcp structure, two types of voids are generated. While the number of octahedral voids

present in a lattice is equal to the number of close packed particles, the number of tetrahedral

voids generated is twice this number. In ionic solids, the bigger ions (usually anions) form the

close packed structure and the smaller ions (usually cations) occupy the voids. If the latter ion

is small enough then tetrahedral voids are occupied, if bigger, then octahedral voids.

Not  all  octahedral or tetrahedral voids are  occupied.  In a  given compound,  the fraction of

octahedral or tetrahedral voids that are occupied, depends upon the chemical formula of the

compound, as can be seen from the following examples.

Solved Example 1

A compound is formed by two elements X and Y.  Atoms of the element Y (as anions) make

ccp  and those of  the  element  X (as  cations)  occupy all  the  octahedral  voids.  What  is  the

formula of the compound? 



Solution:

The ccp lattice is formed by the element Y. The number of octahedral voids generated would be

equal to the number of atoms of Y present in it. Since all the octahedral voids are occupied by

the atoms of X, their number would also be equal to that of the element Y. Thus, the atoms of

elements X and Y are present in equal numbers or 1:1 ratio. Therefore, the formula of the

compound is XY. 

Solved Example 2

Atoms of element B form hcp lattice and those of the element A occupy 2/3rd of tetrahedral

voids. What is the formula of the compound formed by the elements A and B?

Solution:

The number of tetrahedral voids formed is equal to twice the number of atoms of element B

and only 2/3rd of these are occupied by the atoms of element A. 

Hence the ratio of the number of atoms of A and B is 2 × (2/3):1 or 4:3 and the formula of the

compound is A4B3.

5. Packing Efficiency

In whatever way the constituent particles (atoms, molecules or ions) are packed, there is always

some free space in the form of voids. Packing efficiency is the percentage of total space filled

by the particles. Let us calculate the packing efficiency in different types of structures.

5.1 In a Simple Cubic Lattice

In a simple cubic lattice the atoms are located only on the corners  of the cube. 

The edge length or side of the cube = ‘a’, 

The radius of each particle = r 

From the Fig 18 , a = 2r  

The volume of the cubic unit cell = a3 = (2r)3 = 8r3

Since a simple cubic unit cell contains only 1 atom

The volume of one atom occupied space = 4/3π r3

Packing efficiency = (Volume of one atom / Volume of cubic unit cell) x100%

                    = 4/3π r3 / 8r3 x 100%

                    = 52.38% = 52.4%



Fig 18: Packing in a Simple cubic lattice

5.2  In a Body-Centred Cubic Structures

In a Body centered cubic lattice the atoms are located at the corners of the cube and one atom

at the center of the cube. From Fig.19 it is clear that the atom at the centre will be in touch with

the other two atoms diagonally arranged.

In  Δ EFD

b2 =  a2  +  a2 = 2a2

b =  √2a

Now in Δ AFD

c2 =  a2 + b2  =  a2 + 2a2  = 3a2

c = √ 3a

The length of the body diagonal c is equal to 4r, Therefore, 

√3 a = 4 r

a=
4 r

√3

Thus,  r=
√ 3a

4

Total number of atoms is 2, and their volume = 2 x (4/3)π r3

Volume of the cube, a3
=

4

√3
r3

Therefore , 

Packing efficiency = 
Volume occupied by two spheres in the unit cell
Total volume of the unit cell

×100  %

2 x ( 4
3 )π r3 x100

[4 /√3 r ]
3

= 
(8/3 ) π r3

64 / (3√3 ) r3 ×100  = 68%



Fig. 19: Body-centred cubic unit cell (sphere along the body diagonal are shown with solid boundaries).

5.3 In a Face-Centred Cubic (HCP and CCP) Structures

In Fig. 20 let the unit cell edge length be ‘a’ and face diagonal AC = b.

In Δ ABC

AC2 = b2 = BC2 + AB2  = a2 + a2 = 2a2

Or  b = √ 2 a

If r is the radius of the sphere, we find 

b = 4 r = √2 a

or a = 4r/√2  = 2√2 r

Also r =  a/(2√2)

We know, that each unit cell in fcc structure has 4 atoms.

Total volume of four spheres  is equal to 4 x (4/3) π r3

Volume of the cube is a3  or ( 2√2 r )3

Therefore , 

Packing efficiency = 
Volume occupied by four spheres in the unit cell
Total volume of the unit cell

×100  %

4 ×( 4
3 )πr3 x100

(2√2r )
3  = ( 16

3 )π r3 ×100

16√2 r3
   = 74 %

Thus, we may conclude that ccp and hcp structures have maximum packing efficiency.

Fig. 20: Cubic close packing other sides are not provided with spheres for sake of clarity.



5.4 Calculation involving dimensions of the Unit Cell

Let us write the formula of density of the unit cell,

Density of unit cell =
Mass of unit cell
Volume of unit cell

Calculation of the volume of the unit cell:

Cell edge of the unit cell = a cm     

Volume of the unit cell = a3 cm3

Calculation of the mass of the unit cell:

Mass of the unit cell = (Number of atoms per unit cell) × (mass of each atom)

We know that mass of one mole (6.023 × 1023 ) atoms or molecules is equal to its molar mass.

∴Mass of 1 atom = molar mass / NA   = M / NA

∴Mass of the unit cell =  (z) × (M / NA )  

∴Density of the unit cell  = d=
Z × ( M / N A )

a3 =
Z × M
N A a3

Where  z = Number of atoms per Unit cell,  NA = Avogadro’s number 

Solved Example 3

An element has a body-centred cubic (bcc) structure with a cell edge of 288 pm. The density of

the element is 7.2 g/cm3. How many atoms are present in 208 g of the element?

Solution:

Volume of the unit cell = (288 pm)3

= (288×10-12 m)3 = (288×10-10 cm)3

= 2.39×10-23 cm3

Volume of 208 g of the element = mass / density

=    208g / 7.2g cm-3

=    28.88 cm3

Number of unit cells in this volume = 28.88 cm3  / (2.39 × 10-23 cm3 per unit cell)

= 12.08×1023 unit cells 

Solved Example 4

Silver crystallizes in an fcc lattice. The edge length of its unit cell is 4.077 × 10 -8cm and its

density is 10.5g/cm3. Calculate on this basis the atomic mass of silver. (NA =6.023 × 1023)

Solution:



Since the lattice is fcc, the number of silver atoms per unit cell = z = 4

Molar mass of silver = M

Edge length of unit cell = a = 4.077 × 10-8 cm 

Density = 10.5 g/cm3

We know that, d = (z ×M) / (NA×a3)

Atomic size = M = (d×NA×a3) / z = 10.5 × 6.023 × 1023× (4.077 × 10-8)3 / 4

     = 107.1 g mol-1.

6. Summary

The constituent particles in crystalline solids are arranged in a regular pattern which extends

throughout the crystal. This arrangement is often depicted in the form of a three dimensional

array of points which is called crystal  lattice.  Each  lattice point gives the location of one

particle  in  space.  In  all,  fourteen  different  types  of  lattices  are  possible  which  are  called

Bravais lattices.  Each lattice can be generated by repeating its small characteristic portion

called unit cell. A unit cell is characterised by its edge lengths and three angles between these

edges. Unit cells can be either primitive which have particles only at their corner positions or

centred. The centred unit cells have additional particles at their body centre (body-centred), at

the  centre  of  each  face  (face-centred)  or  at  the  centre  of  two  opposite  faces  (end-

centred).There  are  seven types  of  primitive  unit  cells.  Taking  centred  unit  cells  also  into

account, there are fourteen types of unit cells in all, which result in fourteen Bravais lattices.

Close-packing  of  particles  result  in  two  highly  efficient  lattices, hexagonal  close-packed

(hcp) and cubic close-packed (ccp). The latter is also called face-centred cubic (fcc) lattice. In

both of these packing 74% space is filled. The remaining space is present in the form of two

types of voids-octahedral voids and tetrahedral voids. Other types of packing are not close-

packings and have less efficient packing of particles.  While  in  body-centred cubic lattice

(bcc) 68% space is filled, in simple cubic lattice only 52.4% space is filled.


