1. मॉडचूल और इसकी संरचना का विवरण

मॉडचूल विस्तार	
विषय शीर्षक	रसायन विज्ञान
पाठचक्रम शीर्षक	रसायन विज्ञान 01 (कक्षा XI, सेमेस्टर -1)
मॉडचूल नाम / शीर्षक	रासायनिक आबंधन तथा आण्विक संरचना :भाग 1
मॉडचूल आईडी	kech_10401
शर्ते	अणुओं में आबंधो की प्रकृति, सहसंयोजक आबंध
उद्देश्य	विषय सूची:
संकेतक	वीएसईपीआर (VSEPR), अणुओं की ज्यमितियाँ, संयोजकता आबंध सिद्धांत, संकरण, अष्टक् नियम (Octet Rule)

2. विकास दल

पद	नाम	सम्बद्ध
राष्ट्रीय MOOC समन्वयक	प्रोo अमरेन्द्र पी. बेहरा	CIET, NCERT, नई दिल्ली
(NMC)		
कार्यक्रम संचालक	डॉ० मो० मामुर अली	CIET, NCERT, नई दिल्ली
पाठचक्रम समन्वयक (CC) / PI	प्रो० आर० के० पाराशर	DESM, NCERT, नई दिल्ली
पाठचक्रम सह-समन्वयक / Co-PI	डॉ एरुम खान	CIET, NCERT, नई दिल्ली
विषय वस्तु विशेषज्ञ (SME)	प्रीति किरण	केंद्रीय विद्यालय नृंब्र 1,
		एएफएस, हिंडन, जीजेडबी
समीक्षा दल	डॉ. सुलेखा चंद्रा	जाकिर हुसैन कॉलेज, नई दिल्ली
	<u>~</u>	
	डॉ एरुम खान	सी. आई. ई. टी.
अनुवादक	डॉ. राम बाबू पचवार्या	सहायक आचार्य मोतीलाल नेहरू
		महाविद्यालय, दिल्ली विश्वविद्यालय
		साउथ प्रांगण, बीजेएम, धौलाकुआँ

विषय सूची:

- 1 परिचय: रासायनिक आबंधन तथा आण्विक संरचना
- 2 रासायनिक आबंधन की कॉसेल-लइस अवधारणा
- 3 अष्टक् नियम (Octet Rule)
- 4 सहसंयोजक और विद्युत आबंध
- 5 फॉर्मल आवेश
- 6 अष्टक् नियम की सीमाएँ
- 7 सारांश

1.परिचय : रासायनिक आबंधन तथा आण्विक संरचना

द्रव्य एक या विभिन्न प्रकार के तत्त्वों से मिलकर बना होता है। सामान्य स्थितियों में उत्कृष्ट गैसों के अलावा कोई अन्य तत्त्व एक स्वतंत्र परमाणु के रूप में विद्यमान नहीं होता हैं। परमाणुओं के समूह विशिष्ट गुणों वाली स्पीशीश के रूप में विद्यमान होते हैं। परमाणुओं के ऐसे समूह को 'अणु' (Molecule) कहते हैं। प्रत्यक्ष रूप में कोई बल अणुओं के घटक परमाणुओं को आपस में पकड़े रहता है। विभिन्न रासायनिक स्पीशीश में उनके अनेक घटकों (परमाणुओं, आयनों, इत्यादि) को संलग्न रखनेवाले आकर्षण बल को 'रासायनिक आबंध' कहते हैं। चूँकि रासायनिक यौगिक विभिन्न तत्त्वों के परमाणुओं वफी भिन्न-भिन्न विधिओं से संयुक्त होने के परिणामस्वरूप बनते हैं, अतः इससे कई प्रश्न उत्पन्न होते हैं।

- परमाणु संयुक्त क्यों होते हैं?
- केवल कुछ संयोजन ही संभव क्यों हैं?
- क्यों कुछ परमाणु संयुक्त होते हैं, जबिक कुछ अन्य ऐसा नहीं होते हैं?
- अणुओं की निश्चित आकृतियाँ क्यों होती हैं?

इन सभी प्रश्नों के उत्तर देने के लिए समय-समय पर विभिन्न सिद्धांत सामने आए हैं। ये हैं कॉसेल-लूइस सिद्धांत, संयोजकता कक्ष इलेक्ट्रान युग्म प्रतिकर्षण (वी.एस.ई.पी.आर) सिद्धांत, संयोजकता आबंध सिद्धांत तथा आण्विक कक्षक सिद्धांत।

संयोजकता के विभिन्न सिद्धांतो का विकास तथा रासायनिक आबंधों की प्रकृति की व्याख्या का सीधा संबंध वास्तव में परमाणु-संरचना तत्त्वों के इलेक्ट्रॉनिक विन्यास तथा आवर्त सारणी को समझने से रहा है। प्रत्येक निकाय अधिक स्थायी होने का प्रयास करता है। यह आबंधन स्थायित्व पाने के लि ऊर्जा को कम करने का प्राकृतिक तरीका है। इस तरह के सवालों के जवाब के लिए समय-समय पर विभिन्न सिद्धांतों और अवधारणाओं को सामने रखा गया है। ये हैं

- कॉसेल-लूइस अवधारणा
- संयोजकता कक्ष इलेक्ट्रॉन युग्म प्रतिकर्षण (VSEPR) सिद्धांत

- संयोजकता आबंध (VB) सिद्धांत और
- आण्विक कक्षक (MO) सिद्धांत।

विभिन्न सिद्धांतों का विकास और रासायनिक आबंधन की प्रकृति की व्याख्या का संबंध परमाणु की संरचनाए की समझ, तत्वों के इलेक्ट्रॉनिक विन्यास तथा आवर्त सारणी की समझ से है। प्रत्येक निकाय अधिक इस्थाईत्व प्राप्त करने का प्रयास करता है और आबंधन निकाय दुआरा स्थायित्व पाने के लि ऊर्जा को कम करने का प्राकृतिक तरीका है।

2. रासायनिक आबंधन की कॉसेल-लूइस अवधारणा

इलेक्ट्रॉनो द्वारा रासायनिक आबंधों के बनने की व्याख्या के लिए कई प्रयास किए गए लेकिन सन् 1916 में कॉसेल और लुइस नामक वैज्ञानिको ने स्वतंत्र रूप से संयोजकता की संतोषजनक व्याख्या देने में सफलता प्राप्त की । यह व्याख्या उत्कृष्ट गैसों की अिक्रयता के तार्किक विवरण पर आधारित थी।

हीलियम को छोड़करए उत्कृष्ट गैसों के परमाणुओं के बाह्य संयोजकता कक्षकों में अधिकतम आठ इलेक्ट्रॉन समाहित हो सकते है। ns^2np^6 जो स्थिर इलेक्ट्रॉनिक विन्यास माना जाता है एवम अधिकतम स्थिरता को दर्षाता है। स्थिर विन्यास के कारण उत्कृष्ट गैसों में इलेक्ट्रॉनों को हासिल करने या खोने की कोई प्रवृत्ति नहीं होती है और इसलिए उनकी संयोजन क्षमता शून्य होती है। उनकी इस निष्क्रियता के कारण वे एकल गैसीय परमाणुओं के रूप में मौजूद रहित हैं। उत्कृष्ट गैसों के अलावा अन्य सभी परमाणुओं के संयोजकता कक्षकों में आठ से कम इलेक्ट्रॉन होते हैं अर्थात उनके पास स्थिर इलेक्ट्रॉनिक विन्यास नहीं होता है। इसलिए वे एक दूसरे या अन्य परमाणुओं के साथ आबंधन करके उत्कृष्ट गैसों की तराह स्थिर इलेक्ट्रॉनिक विन्यास प्राप्त करते हैं। .(ns²np6 तथा 1s²) इलेक्ट्रॉनिक विन्यास न्यूनतम ऊर्जा और अधिकतम स्थिरता को दर्षाता है। परमाणु एक दूसरे के साथ तभी जुड़ते हैं जब रासायनिक किरया उनकी ऊर्जा को कम करती है। लुइस ने परमाणुओं को एक धन आवेशित "गिरी" (Kernel) (आंतरिक इलेक्ट्रॉन एवं नाभिक) के स्वरूप में दर्शया जिसके बाह्य कक्षकों में अधिकतम आठ इलेक्ट्रॉन समाहित हो सकते हैं। उसने यह भी माना कि ये आठों इलेक्ट्रॉन घन के आठों कोनों पर उपस्थित होते हैं, जो केंद्रीय गिरी को चारों तरफ से घेरे रहते हैं। इस परकार सोडियम के बाह्य कक्ष में उपस्थित एकल इलेक्ट्रॉन घन के एक कोने पर स्थित रहता है, जबकि उत्कृष्ट गैसों में घन के आठों कोनों पर एक-एक इलेक्ट्रॉन उपस्थित रहते हैं। इलेक्ट्रॉनो का यह अष्टक् एक विशेष स्थायी विन्यास निरूपित करता है। लूइस ने यह अभिगृहीत दिया कि परमाणु परस्पर रासायनिक आबंध द्वारा संयुक्त होकर अपने स्थायी अष्टक् को पुराप्त करते हैं। उदाहरण के लिए सोडियम एवं क्लोरीन में सोडियम अपना एक इलेक्ट्रॉन क्लोरीन को सरलतापूर्वक देकर अपना स्थायी अष्टक् प्राप्त करता है तथा क्लोरीन एक इलेक्ट्रॉन प्राप्त कर अपना स्थायी अष्टक् निर्मित करता है, अर्थात् सोडियम आयन (Na⁺) एवं क्लोराइड आयन (Cl⁻) बनते हैं। अन्य उदाहरणों ;जैसे- Cl_2 , H_2 , F_2 इत्यादि में परमाणुओं में आबंध परस्पर इलेक्ट्रॉनो की सहभाजन द्वारा बन्नते हैं। इस प्रिक्रया द्वारा इन अणुओं के परमाणु एक बाह्य स्थायी अष्टक् अवस्था प्राप्त करते हैं। लूइस प्रतीक: किसी अणु के बनने में परमाणुओं के केवल बाह्य कोश के इलेक्ट्रॉन ही रासायनिक संयोजन में भाग लेते हैं जौ संयोजकता इलेकट्रान (Valence Electron) कहलाते हैं। आंतरिक कोश के इलेक्ट्रॉन (Inner Shell Electron) अच्छी प्रकार से सुरक्षित होते हैं तथा सामान्यतः संयोजन प्रिक्रया में सम्मिलित नहीं होते हैं।

एक अमेरिकी रसायनज्ञ जी.एन. लूइस ने परमाणु में संयोजकता इलेक्ट्रॉनो को निरूपित करने के लिए सरल संकेतनों को प्रस्तावित किया, जिन्हें लूइस प्रतीक (Lewis Symbol) कहा जाता है। उदाहरणार्थ दूसरे आवर्त के तत्त्वों के 'लूइस प्रतीक' इस प्रकार हैं-

लूइस प्रतीकों का महत्त्व: प्रतीक के चारों ओर उपस्थित बिन्दुओं की संख्या परमाणु के संयोजकता इलेक्ट्रॉनों की संख्या को दर्शाती है। यह संख्या तत्त्व की सामान्य अथवा समूह संयोजकता के परिकलन में सहायता देती है। तत्त्व की समूह संयोजकता या तो लूइस प्रतीक में उपस्थित बिन्दुओं की संख्या के बराबर होती है या 8 में से बिन्दुओं अथवा संयोजकता इलेक्ट्रॉनों की संख्या को घटाकर इसे परिकलित किया जा सकता है। रासायनिक आबंधन के संबंध में कॉसेल ने निम्नलिखित तथ्यों की ओर ध्यान आकर्षित किया-आवर्त सारणी में उच्च ऋणात्मकता वाले हैलोजेन तथा उच्च विद्युत्-धनात्मकता वाले क्षार धातु एक दूसरे से उत्कृष्ट गैसों द्वारा पृथक रखे गए हैं।

हैलोजेन परमाणुओं से ऋणात्मक आयन तथा क्षार से धनायन का निर्माण संबंधित परमाणुओं द्वारा क्रमशः
 एक इलेक्ट्रान ग्रहण करने तथा एक इलेक्ट्रान मुक्त होने के फलस्वरूप होता है।

इस प्रकार बनने वाले ऋणायन तथा धनायन उत्कृष्ट गैस के स्थायी इलेक्ट्रानिक विन्यास को प्राप्त करते हैं। उत्कृष्ट गैसों में बाह्यतम कोश का आठ इलेक्ट्रानों वाला (अष्टक) विन्यास ns^2np^6 , विशेष रूप से स्थायी होता है। हीलियम इसका अपवाद है, जिसके बाह्यतम कोश मे केवल दो इलेक्ट्रान होते हैं।

• ऋणायन तथा धनायन स्थिर वैद्युत आकर्षण द्वारा स्थायित्व ग्रहण करते हैं।

उदाहरणार्थ: उपर्युक्त सिद्धांत के अनुसार, सोडियम तथा क्लोरीन से NaCl का बनना निम्नलिखित रूप में दर्शाया जा सकता है:

Na
$$\rightarrow$$
 Na $^{+}$ + e⁻
[Ne] 3s¹ [Ne]
Cl + e⁻ \rightarrow Cl₋
[Ne] 3s² 3p⁵ [Ne] 3s² 3p⁶ or [Ar]
Na $^{+}$ + Cl $^{-}$ \rightarrow NaCl or Na $^{+}$ Cl $^{-}$

 \mathbf{CF}_2 का बनना इस प्रकार दर्शाया जा सकता है:

Ca \to Ca₂⁺ + 2e⁻ [Ar] 4s² or [Ar] F + e⁻ \to F-[He] 2s² 2p⁵ [He] 2s² 2p⁶ or [Ne]

 $Ca_{2}^{+} + 2F^{-} \rightarrow CaF_{2} \text{ or } Ca_{2}^{+}(F^{-})_{2}$

धनायन तथा ऋणायन के बीच आकर्षण के फलस्वरूप निर्मित आबंध को 'वैद्युत् संयोजक आबंध' (Electrovalent Bond) का नाम दिया गया। इस प्रकार वैद्युत संयोजकता (Electrovalency) आयन पर उपस्थित आवेश की इकाइयों की संख्या के बराबर होती है। अतः केल्सियम की धनात्मक वैद्युत संयोजकता दो हैं, जबिक क्लोरीन की ऋणात्मक संयोजकता एक है। इलेक्ट्रॉन स्थानांतरण द्वारा आयन का बनना तथा आयनिक क्रिस्टलीय यौगिकों के बनने के बारे में आधुनिक संकल्पनाएँ कॉसेल के अभिगृहीतों (Postulates) पर आधारित हैं। आयनिक यौगिकों के व्यवहार को समझने तथा उनको क्रमबद्ध करने में कॉसेल के विचारों से उल्लेखनीय सहायता मिली। साथ ही साथ उन्होंने इस तथ्य को भी स्वीकार किया है कि अनेक यौगिक उनकी अवधारणाओं के अनुरूप नहीं थे।

3. अष्टक् नियम (Octet Rule)

सन् 1916 में कॉसेल तथा लूइस ने परमाणुओं के बीच रासायनिक संयोजन के एक महत्त्वपूर्ण सिद्धांत को विकिसत किया। इसे 'रासायनिक आबंधन का इलेक्ट्रानिकी सिद्धांत' कहा जाता है। इस सिद्धांत के अनुसार, परमाणुओं का संयोजन इलेक्ट्रानों के एक परमाणु से दूसरे परमाणु परस्थानांतरण के द्वारा अथवा संयोजक इलेक्ट्रानों के सहभाजन (Sharing) के द्वारा होता है। इस प्रिक्रया में परमाणु अपने संयोजकता कोश में अष्टक् अवस्था प्राप्त करते हैं। इसे 'अष्टक् नियम' कहते हैं। सहसंयोजक और इलेक्ट्रोवलेंट आवंध (Covalent and Electrovalent Bond)

लुईस सिद्धांत, इलेक्ट्रॉनों के संदर्भ में एक सहसंयोजक आबंध के गठन की व्याख्या करने वाला पहला सिद्धांत था जिसे आम तौर पर स्वीकार किया गया था। यदि दो इलेक्ट्रॉनों को दो परमाणुओं के बीच साँझा किया जाता है तो यह एक आबंध निर्मित होता है जो परमाणुओं को एक साथ बांधता है। जब परमाणु आठ सन् 1916 में कॉसेल तथा लूइस ने परमाणुओं के बीच रासायनिक संयोजन के एक महत्त्वपूर्ण सिद्धांत को विकसित किया। इसे 'रासायनिक आबंधन का इलेक्ट्रानिकी सिद्धांत' कहा जाता है। इस सिद्धांत के अनुसार, परमाणुओं का संयोजन इलेक्ट्रॉनों के एक परमाणु से दूसरे परमाणु परस्थानांतरण के द्वारा अथवा संयोजक इलेक्ट्रॉनों के सहभाजन (Sharing) के द्वारा होता है। इस प्रिक्रिया में परमाणु अपने संयोजकता कोश में अष्टक् अवस्था प्राप्त करते हैं। इसे 'अष्टक् नियम' कहते हैं।

4. सहसंयोजक और इलेक्ट्रोवलेंट आबंध (Covalent and Electrovalent Bond)

लुईस सिद्धांत, इलेक्ट्रॉनों के संदर्भ में एक सहसंयोजक आबंध के गठन की व्याख्या करने वाला पहला सिद्धांत था जिसे आम तौर पर स्वीकार किया गया था। यदि दो इलेक्ट्रॉनों को दो परमाणुओं के बीच साँझा किया जाता है तो यह एक आबंध निर्मित होता है जो परमाणुओं को एक साथ बांधता है। जब परमाणु आठ इलेक्ट्रॉनों से घिरा होता है तब कई हलके परमाणुओं के लिए एक स्थिर व्यवस्था निर्मित होती है । इस अष्टक को कुछ इलेक्ट्रॉनों के सयोजन से बनाया जा सकता है, जिसमे कुछ जो पूरी तरह से स्वामित्व (Totally owned) वाले होते हैं और कुछ इलेक्ट्रॉन्स साँझा (Sharing) में होते हैं। इस प्रकार परमाणु बनते रहते हैं । परमाणु तब तक (एकल और बहु) आवंध बनाते रहते हैं जब तक कि वे इलेक्ट्रॉनों का एक अष्टक पूरा नहीं कर लेते। इसे अष्टक नियम कहा जाता है। अष्टक नियम बड़ी

संख्या में संयोजकता की वैधता की व्याख्या करता है। सन् 1919 में लैंगम्यूर ने लूइस अभिगृहीतिओं में संशोधन किया। उन्होंने स्थिर घनीय अष्टक् की आवधारणा का परित्याग किया तथा 'सहसंयोजक आबंध' (Covalent Bond) का प्रयोग किया।

लूइस-लैंगम्यूर के सिद्धांत को क्लोरीन अणु C12 के बनने के उदाहरण से समझा जा सकता है । क्लोरीन परमाणु का इलेक्ट्रानिक विन्यास [Ne] $3s^{2}$ $3p^{2}$, है, अर्थात् क्लोरीन परमाणु में आर्गन के विन्यास को प्राप्त करने के लिए एक इलेक्ट्रॉन की कमी है। C12 अणु के बनने को दो क्लोरीन परमाणुओं के बीच एक इलेक्ट्रॉन युग्म के सहभाजन के रूप में समझा जा सकता है। इस प्रिक्रया में दोनों क्लोरीन परमाणु सहभाजित इलेक्ट्रॉन युग्म में एक-एक इलेक्ट्रॉन का योगदान करते हैं तथा इनके बाह्यय कोष, निकटतम उत्कृष्ट गैस, अर्थात् आर्गन का अष्टक विन्यास प्राप्त कर लेते हैं।

$$: \overrightarrow{Cl} + : \overrightarrow{Cl} \longrightarrow \underbrace{: \overrightarrow{Cl} : \overrightarrow{Cl}:}_{8e^{-}}$$

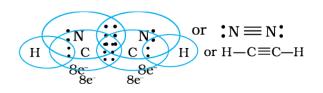
दो Cl परमाणुओं के मध्य सहसंयोजक आबंध (Cl-Cl)

यहाँ बिंदु इलेक्ट्रॉनो को निरूपित करते हैं। ये संरचनाएँ 'लूइस बिंदु संरचनाएँ' कहलाती हैं।

अन्य अणुओं के लिए भी लूइस बिंदु संरचनाएँ लिखी जा सकती हैं, जिनमें संयुक्त होने वाले परमाणु समान अथवा भिन्न हो सकते हैं। इसके लिए मुख्य नियम निम्नलिखित हैं:

- प्रत्येक आबंध का निर्माण परमाणुओं के मध्य एक इलेक्ट्रॉन युग्म के सहभाजन के फलस्वरूप होता है।
- संयुक्त होने वाला प्रत्येक परमाणु सहभाजित युग्म में एक-एक इलेक्ट्रॉन का योगदान देता है।
- इलेक्ट्रॉनो के सहभाजन के फलस्वरूप संयुक्त होने वाले परमाणु अपने बांध कोश में उत्कृष्ट गैस
 विन्यास प्राप्त कर लेते हैं।

• इस प्रकार, जल तथा कार्बन टेट्राक्लोराइड के अणुओं में आबंधों के निर्माण को हम इस प्रकार निरूपित कर



एक इलेक्ट्रॉन युग्म द्वारा संयुग्मित दो परमाणु एकल सहसंयोजी आबंध (Single Covalent Bond) द्वारा आबंधित कहलाते हैं। कई यौगिकों में परमाणुओं के बीच बहु-आबंध (Multiple Bonds) उपस्थित होते हैं। बहु-आबंधों का निर्माण दो परमाणुओं के मध्य एक से अधिक इलेक्ट्रॉन युग्मों के सहभाजन के फलस्वरूप होता है। दो परमाणुओं के मध्य यदि दो इलेक्ट्रॉन युग्मों का सहभाजन होता है, तो उनके बीच का सहसंयोजी आबंध 'द्वि-आबंध' (Double Bond) कहलाता है। उदाहरणार्थ: कार्बन डाइ-आक्साइड CO2 अणु में कार्बन तथा ऑक्सीजन परमाणुओं के मध्य दो द्वि-आबंध उपस्थित होते हैं।

CO2 अणु में द्वि-आबंध

इसी प्रकार एथीन (Ethene) के अणु में दो कार्बन परमाणु एक द्वि-आबंध द्वारा बंधित होते हैं।

जब संयोजी परमाणुओं के मध्य तीन इलेक्ट्रॉन युग्मों का सहभाजन होता है, जैसा N_2 अणु के दो नाइट्रोजन परमाणुओं के मध्य या एथाइन में दो कार्बन परमाणुओं के मध्य है, तब उनके मध्य एक ति्र-आबंध ($Triple\ Bond$) बनता है ।

 C_2H_2 अणु

सरल अणुओं का लूइस निरूपण(लूइस संरचनाए)

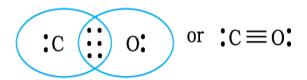
लूइस बिंदु संरचनाओं द्वारा सहभाजित इलेक्ट्रॉन युग्मों तथा अष्टक् नियम के अनुसार अणुओं एवं आयनों में आबंधन का चित्रण किया जाता है। यद्यपि यह चित्रण अणु में आबंधन तथा उसकी प्रकृति को पूर्ण रूप से स्पष्ट नहीं करता, परंतु इसके आधार पर अणु के विरचन तथा उसके गुणों को पर्याप्त रूपसे तक समझने में सहायता मिलती है। अतः अणुओं की लूइस बिंदु संरचनाएँ निर्मित करना अत्यंत उपयोगी होता हैं। लूइस बिंदु संरचनाओं को निम्नलिखित पदों के आधार पर लिखा जा सकता है। लूइस बिंदु संरचनाओं को लिखने के लिए आवश्यक कुल इलेक्ट्रॉनो की संख्या संयुग्मित होने वाले परमाणुओं के संयोजकता इलेक्ट्रॉनो के योग द्वारा प्राप्त की जाती है।

- उदाहरणार्थ: CH_4 अणु में कुल आठ संयोजकता इलेक्ट्रॉन आबंधन के लिए उपलब्ध होते है । (4 कार्बन परमाणु से तथा 4 हाइड्रोजन के चार परमाणुओं से)
- ऋणायनों के लिए, प्रीति ऋणांत्मक आवेश के जुड़ने का अर्थ एक इलेक्ट्रॉन का जुड़ना।
- धनायनों के लिए, संयोजकता इलेक्ट्रॉनो की कुल संख्या में प्रित धनावेश के जुड़ने का अर्थ संयोजकता इलेक्ट्रॉन से एक इलेक्ट्रॉन का काम होना।
- उदाहरणतः CO_3^{2-} आयन के ऊपर दो ऋणात्मक आवेश यह दर्शाते हैं कि इस आयन में उपस्थित उदासीन परमाणुओं द्वारा दिए गए इलेक्ट्रॉनो के योग से दो इलेक्ट्रॉन अधिक हैं। NH_4^+ आयन पर उपस्थित धनावेश, उदासीन परमाणुओं के समूह के इलेक्ट्रॉनो के योग से एक इलेक्ट्रॉन की हानि को दर्शाता है।
- संयुक्त होने वाले परमाणुओं के रासायनिक प्रतीकों तथा अणु की आधारभूत संरचना अर्थात कौन से परमाणु किन
 परमाणुओं के साथ आबंधित हैं: इस बात का ज्ञान होने पर परमाणुओं के बीच सभी इलेक्ट्रॉनो का वितरण आबंधित
 सहभाजी इलेक्ट्रॉन युग्मों के रूप में तथा संपूर्ण आबंधों की संख्या के अनुपात में सरल हो जाता है।
- सामान्यतः अणु में न्यूनतम विद्युत् ऋणात्मकता वाला परमाणु, अणु/ आयन परमाणु का केद्रीय को अधिग्रहित(occupy)
 कर लेता है । जैसे NF₃ तथा CO₃²⁻ क्रमशः नाइट्रोजन तथा कार्बन केद्रीय परमाणु के रूप में लिखे जाएँगे, जबिक फ्लोरीन और ऑक्सीजन अंतस्थ (Terminal Positions) स्थान वाले परमाणु के रूप में लिखे जाएँगे।
- एकल आबंधों के लिए सहभाजित इलेक्ट्रॉन युग्म लिखने के पश्चात् शेष इलेक्ट्रॉन युग्मों का उपयोग या तो बहु-आबंधन के लिए किया जाता है या वे एकाकी इलेक्ट्रॉन युग्मों के रूप में रहते हैं। आधारभूत आवश्यकता यह है कि प्रत्येक आबंधित परमाणु में इलेक्ट्रॉनो का अष्टक पूरा होना चाहिए।

लुइस द्वारा निरूपित कुछ अणुओ /आयनो की बिंदु संरचनाओं को सरणी 1 में दर्शाया गया है । तालिका 1 : कुछ अणुओं का लुईस निरूपण ।

Molecule/Id	on	Lewis Representation
H_2	H : H*	H – H
O_2	:Ö::Ö:	:Ö=Ö:
O_3	, Ö, ; Ö, , Ö, ;	:Ö <u>Ö</u> +
NF_3	:F: N:F: :F:	: <u>F</u> -N-F: :F:
CO_3^{2-}	: O: : O	
HNO_3	.:: :::::::::::::::::::::::::::::::	$ \overset{:\circ:^{-}}{\overset{:\circ:^{-}}{\overset{\circ}{\circ}}} = \overset{\circ}{\overset{\circ}{\overset{\circ}{\circ}}} - \overset{\circ}{\overset{\circ}{\circ}} - \overset{\circ}{\overset{\circ}{\overset{\circ}{\circ}}} - \overset{\circ}{\overset{\circ}{\overset{\circ}{\overset{\circ}{\circ}}}} - \overset{\circ}{\overset{\circ}{\overset{\circ}{\overset{\circ}{\circ}}}} - \overset{\circ}{\overset{\circ}{\overset{\circ}{\overset{\circ}{\circ}}}} - \overset{\circ}{\overset{\circ}{\overset{\circ}{\overset{\circ}{\circ}}}} - \overset{\circ}{\overset{\circ}{\overset{\circ}{\overset{\circ}{\circ}}}} - \overset{\circ}{\overset{\circ}{\overset{\overset{\circ}{\overset{\circ}{\circ}}}} - \overset{\circ}{\overset{\circ}{\overset{\circ}{\overset{\circ}{\overset{\circ}{\overset{\circ}{\overset{\circ}{\overset{\circ}$

समस्या 1: CO के अणु की लूइस बिंदु संरचना लिखें।


पद 1. कार्बन तथा ऑक्सीजन परमाणुओं के संयोजी इलेक्ट्रॉनो की कुल संख्या की गणना:

कार्बन तथा ऑक्सीजन परमाणुओं के बहाय (संयोजकता) कोश के इलेक्ट्रॉन का विन्यास क्रमशः $2s^22p^2$ तथा $2s^22p4$ है । उपलब्ध संयोजकता इलेक्ट्रॉनो की संख्या

$$= 4 + 6 = 10$$

पद 2. CO की आधारभूत संरचना इस प्रकार लिखी जाएगी :

पद 3. C तथा O के बीच एक एकल आबंध बनाएँ (अर्थात् एक सहभाजित इलेक्ट्रॉन युग्म लिखें) एवं ऑक्सीजन के परमाणु पर अष्टक् पूर्ण करें। बचे हुए दो इलेक्ट्रॉन, C पर एकाकी इलेक्ट्रॉन युग्म के रूप में दर्शाएँ परंतु इस संरचना में कार्बन का अष्टक् पूर्ण नहीं होता है। इसलिए C तथा O के बीच बहु-आबंध की आवश्यकता होती है। इन परमाणुओं के मध्य ति्र-आबंध (Triple Bond) बनाने पर दोनों परमाणुओं के लिए अष्टक् नियम का पालन हो जाता है।

समस्या 2

नाइट्राइट आयन, NO2 के लिए 'लूइस संरचना' लिखें।

पद 1. नाइट्रोजन तथा ऑक्सीजन परमाणुओं के संयोजकता इलेक्ट्रॉनो की कुल संख्या एवं इकाई ऋण आवेश (जो की एक इलेक्ट्रोन के बराबर माना जाता है) का कुल योग

:N
$$(2s^2 2p^3)$$
 O($2s^2 2p^4$)

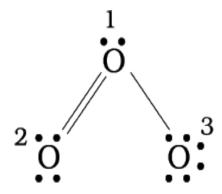
= 5+ (2X6)+ 1= 18 इलेक्ट्रॉन

पद 2. NO2 की आधारभूत संरचना इस प्रकार लिखी जाएगी : O N O

पद 3. नाइट्रोजन तथा प्रत्येक ऑक्सीजन के बीच एक एक आबंध बनाने (अर्थात् एक सहभाजित इलेक्ट्रॉन युग्म लिखने) तथा ऑक्सीजन के परमाणुओं के अष्टक् पूर्ण करने पर नाइट्रोजन पर उपस्थित दो इलेक्ट्रॉन एक एकाकी इलेक्ट्रॉन युग्म बनाते हैं।

चूँकि इस प्रकार नाइट्रोजन परमाणु का अष्टक् पूर्ण नहीं होता है। इसिलए N तथा O के बीच बहु-आबंध की आवश्यकता होती है। नाइट्रोजन तथा ऑक्सीजन के किसी एक परमाणु के बीच बहु-आबंध (इस परिस्थित में एक द्वि-आबंध) बनाने पर हमें निम्निलिखित लूइस बिंदु संरचना प्राप्त होती है:

or
$$\begin{bmatrix}
0 & \vdots & N & \vdots & 0 \\
0 & \vdots & N & \vdots & 0
\end{bmatrix}$$
or
$$\begin{bmatrix}
0 & \vdots & N & \vdots & 0
\end{bmatrix}$$
or
$$\begin{bmatrix}
0 & \vdots & N & \vdots & 0
\end{bmatrix}$$


5. फॉर्मल आवेश (Formal Charge)

लूइस बिंदु संरचनाएँ सामान्यतः अणुओं की वास्तविक आकृति नहीं दर्शाती हैं। बहु-परमाणुक आयनों में संपूर्ण आवेश किसी विशेष परमाणु पर उपस्थित न होकर पूरे आयन पर स्थित होता है। हालाँकि प्रत्येक परमाणु पर फॉर्मल आवेश दर्शाया जा सकता है। बहुपरमाणुक अणु या आयन के किसी परमाणु पर उपस्थित फॉर्मल आवेश दर्शाया जा सकता है। "बहुपरमाणुक अणु या आयन के किसी परमाणु पर उपस्थित फॉर्मल आवेश को उसके विगलित (Isolated or Free State) अर्थात् मुक्त परमाणु अवस्था में संयोजकता इलेक्ट्रॉनो की कुल संख्या तथा लूइस संरचना में परमाणु को प्रदत्त इलेक्ट्रॉनो की संख्या के अंतर के रूप में परिभाषित किया जा सकता है।"

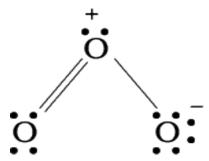
फॉर्मल आवेश [formal charge (FC]: एक अणु में उपस्थित एक परमाणु पर दर्शया गया आवेश, यह मानते हुए कि
सभी रासायनिक आबंधनो में इलेक्ट्रॉनों को समान रूप से (विधुत ऋणात्मकता के प्रभाव की सम्भावना को दरिकनार
करते हुए) साझा किया जाता है। एक अणु के लिए लुईस संरचना (प्रमुख इलेक्ट्रॉनिक अनुनाद संरचना) का निर्धारण

करते समय उस लुइस सरचना को चुना जाता है जिसमे प्रत्येक परमाणु पर फॉर्मल आवेश यथासंभव शून्य के बराबर हो।

- अणु में किसी भी परमाणु के फॉर्मल आवेश की गणना निम्नलिखित समीकरण द्वारा की जा सकती है ।
- FC=V -N -B /2
- इसमें V एक उदासीन परमाणु की मुक्त परमाणु अवस्था में संयोजकता इलेक्ट्रॉनो की संख्या (मूल अवस्था की स्थिति
); N अणु में उपस्थित इस परमाणु पर एकाकी इलेक्ट्रॉन युग्मो की संख्या तथा B अणु में उपस्थित अन्य परमाणुओं के सांथ आबंध बनाने में उपयोग हुए कुल एलेक्ट्रोनो की संख्या ।
- इलेक्ट्रॉनों की गणना इस अवधारणा के आधार पर की जाती है की प्रत्येक साझा इलेक्ट्रॉन युग्म में से एक इलेक्ट्रॉन पर एवं एकाकी युग्म के दोनों इलेक्ट्रानो पर परमाणु का पूर्ण अधिपत्य है ।
 आइए, ओज़ोन (O₃) के अणु को लें।
- O₃ की लूइस संरचना को इस प्रकार लिखा जा सकता है:

- ऑक्सीजन के परमाणुओं को 1, 2 तथा 3 द्वारा चिन्हित किया गया है:
- द्वारा चिन्हित केद्रीय O परमाणु पर फॉर्मल आवेश

•
$$= 6 - 2 - 1/2 (6) = +1$$


द्वारा चिन्हित अंतस्थ O परमाणु पर फॉर्मल आवेश

$$\bullet = 6 - 4 - 1/2(4) = 0$$

• द्वारा चिन्हित अंतस्थ व् परमाणु पर फॉर्मल आवेश

•
$$= 6 - 6 - 1/2 (2) = -1$$

• अतः O_3 के अणु को फॉर्मल आवेश के साथ इस प्रकार दर्शाया जाता है:

यहाँ पर ध्यान देने योग्य बात यह है कि फॉर्मल आवेश, अणु में वास्तविक आवेश पृथक-प्रकट नहीं करते हैं। लूइस संरचना में परमाणुओं पर आवेश को दर्शाने से अणु में संयोजकता, इलेक्ट्रॉनो का लेखा- जोखा रखने में सहायता मिलती है।

फॉर्मल आवेश की सहायता से आणविक की कई संभव लूड्स संरचनाओं में से निम्नतम ऊर्जा की संरचना का चयन करने में सहायता मिलती है।

साधारणतः न्यूनतम ऊर्जा वाली संरचना वह होती है, जिसके परमाणुओं पर न्यूनतम फॉर्मल

आवेश हो। फॉर्मल आवेश का सिद्धांत आबंधन की सहसंयोजी प्रकृति पर आधारित है, जिसमें आबंधित परमाणुओं के मध्य इलेक्ट्रॉनो का सहभाजन समान रूप से होता है।

6. अष्टक् नियम की सीमाएँ

यद्यपि अष्टक् नियम अत्यंत उपयोगी है, परंतु यह सदैव लागू नहीं किया जा सकता है। यह मुख्य रूप से आवर्त सारणी के द्तीय आवर्त के तत्त्वों पर लागू होता है तथा अधिकांश कार्बनिक यौगिकों की संरचनाओं को समझने में उपयोगी है। अष्टक् नियम के तीन प्रमुख अपवाद हैं।

केद्रीय परमाणु का अपूर्ण अष्टक् :

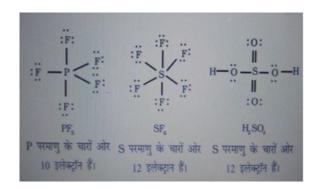
कुछ यौगिकों में केद्रीय परमाणु के चारों ओर उपस्थित इलेक्ट्रॉनो की संख्या आठ से कम होती है। यह मुख्यतः उनतत्त्वों के यौगिकों में होता है, जिनमें संयोजकता इलेक्ट्रॉनो की संख्या चार से कम होती है।

उदाहरण के लिए: LiCl, BeH2 तथा BCl3 लेते हैं।

Cl

Li:Cl H:Be:H Cl:B:Cl

यहाँ पर Li, Be एवं B के संयोजकता इलेक्ट्रॉनो की संख्या क्रमशः 1, 2 तथा 3 है। इस प्रकार के अन्य यौगिक जैसे $AlCl_3$ तथा BF_3 भी अष्टक् नियम के अपवाद हैं।


विषम इलेक्ट्रॉन (Odd-electron) अणु:

जिन अणुओं में इलेक्ट्रॉनो की कुल संख्या विषम होती है ;जैसे: नाइट्रिक ऑक्साइड NO, नाइट्रोजन डाइऑक्साइड NO₂, में सभी परमाणु अष्टक् नियम का पालन नहीं कर पाते हैं ।

$$\ddot{N} = \ddot{O}$$
 $\ddot{O} = \ddot{N} - \ddot{O}$:

प्रसारित अष्टक् (expanded octet).

जिन परमाणुओं में एक अतिरिक्त ऊर्जा स्तर होता हो जो p ऊर्जा स्तर के करीब हो वहां अष्टक् नियम विफल हो जाता है । आवर्त सारणी के तीसरे तथा इसके आगे के आवर्तों के तत्त्वों में आबंधन के लिए 3s तथा 3p कक्षकों के अतिरिक्त 3d कक्षक भी उपलब्ध होते हैं । इन तत्त्वों के अनेक यौगिकों में केद्रीय परमाणु के चारों ओर आठ से अधिक इलेक्ट्रॉन होते हैं । इसे प्रसारित अष्टक् कहते हैं । स्पष्ट है कि इन यौगिकों पर अष्टक् नियम लागू नहीं होता है । ऐसे यौगिकों के कुछ उदाहरण हैं : PF_3 अष्टक् नियम का पालन करता है, लेकिन PF_5 नहीं करता । PF_5 में बाहरी आवर्तों में दस इलेक्ट्रॉन होते हैं, जो एक 3s, तीन 3p और एक 3d ऑबिंटल्स का उपयोग करता है ।

चार से अधिक इलेक्ट्रॉन वाले सभी तत्व आबंध बनाते साय अष्टक् नियम का उल्लंघन करते है, और ये उल्लंघन आवर्त तालिका में आठ तत्वों के पहले दो आवर्तों के बाद के तत्वों में तेजी से सामान्य हो जाते हैं।

दिलचस्प बात यह है कि सल्फर कई यौगिकों का निर्माण करता है जिसमें अष्टक् नियम का पालन होता है। सल्फर डाइक्लोराइड में, एस परमाणु के चारों ओर इलेक्ट्रॉनों का एक अष्टक् होता है।

$$Cl-S-Cl$$
 or Cl S Cl

अष्टक नियम की वुफछ अन्य कमियाँ

यह स्पष्ट है कि अष्टक् नियम उत्कृष्ट गैसों की रासायनिक अिक्रियता पर आधारित है, परंतु कुछ उत्कृष्ट गैसें (जैसे : जिनॉन तथा िक्रिप्टान) ऑक्सीजन तथा फ्लोरिन से भी संयोजित होती हैं तथा कई यौगिक बनाती हैं। जैसे : XeF_2 , KrF_2 , $XeOF_2$ इत्यादि।

अष्टक् सिद्धांत अणु की आकृति स्पष्ट नहीं करता है।

यह अणु की ऊर्जा, अर्थात् उसके सापेक्ष स्थायित्व के बारे में कुछ भी संकेत नहीं देता है।

लुइस संकेत संरचनाये

		TABLE 8.1 Lewis Symbols		
٠	यहा संकेत लुइस प्रतीक / संकेत मने	Ele- ment	Electron Configu- ration	Electron- Dot Symbol
जाते हैं →	जाते हैं →	Li	[He]2s1	Li•
		Be	$[He]2s^2$	·Be•
•	हम वर्ग के चारो तरफ चिन्हित प्रतीक /	В	$[\mathrm{He}]2s^22p^1$	·ġ.
		C	$[\mathrm{He}]2s^22p^2$	·¢·
संकेतो के आध	संकेतो के आधार पर इलेक्ट्रॉन स्थापित	N	$[\mathrm{He}]2s^22p^3$	N:
करदेते हैं ।		0	[He] $2s^22p^4$:¢:
	करदत ह।	F	$[\mathrm{He}]2s^22p^5$	·F:
		Ne	[He]2s ² 2p ⁶	Ne:

लुइस बिंदु संरचना आरेखित करने के लिए : चार पदीय नियम व्यवस्था:

परमाणुओं को आणविक संरचना में व्यस्थित रूपसे स्थापित करना।

चरण 1

- कम विध्युतऋणात्मकता का केंद्रीय परमाणु।
- सूत्र में पहले लिखा गया तत्व आमतौर पर केंद्रीय परमाणु होता है।
- चरण 2: सभी परमाणुओं के संयोजक इलेक्ट्रॉनों में 1 जोड़े
- चरण 3: एकल आबंध बनाये और चरण 2 में गिने प्रत्येक एकल आबंध के लिए इलेक्ट्रॉनों के कुल योग में से 2 इलेक्ट्रॉन घटाए।
- चरण 4: शेष इलेक्ट्रॉनों को सही जमाए: अष्टक् नियम का पालन करने के लिए बचे हुए इलेक्ट्रान्स से द्वि-आबंध, ति्र-आबंध बनाये (हाइड्रोजन को छोड़कर)
- जाँच करें : लुइस संरचना में प्रयुक्त कुल इलेक्ट्रॉन का योग चरण 1 में कुल संयोजक इलेक्ट्रॉनों के योग के बराबर होना चाहिए।
- लुइस संरचना बनाते समय याद रखें :
- हाइड्रोजन और हैलोजन एकाकी आबंध बनाते है।
- ऑक्सिजन परिवार को अष्टक् पूरा

- करने के लिए कम से कम दो आबंधो की जरूरत होती है तािक वे एकाकी या द्वि-आबंध बना सकें।
- नाइट्रोजन परिवार को तीन आबंधो की आवश्यकता होती है तािक वे एकाकी, दूव या ति्र-आबंध बना सके।
- कार्बन परिवार को चार आबंधों की आवश्यकता होती है।

आणविक सरंचना को लुइस सरचना में परिवर्तित करने के विभिन क्रमबद्ध चरण

7. सारांश

लुईस संरचना का नाम गिल्बर्ट एन लुईस के नाम पर रखा गया था जिन्होंने इसे अपने 1916 के एक लेख में प्रकाशित किया था। लुईस बिंदु संरचनाये एक अणु की आणविक ज्यामिति और सयोजकता कक्च्छुक के इलेक्ट्रॉनों का प्रतिनिधित्व करती है। इसे लुईस आरेख/सूत्र/प्रतीक के रूप में भी जाना जाता है। लुईस बिंदु संरचनाये आवर्त 2 एवं 3 के अणुओ तथा परमाणुओं के लिए बहुत उपयोगी है। इन संरचनाओं में केवल सयोजकता कक्च्छुक के इलेक्ट्रॉन ही शामिल होते है।

लुईस संरचनाएं रासायनिक आबंधों में साझा इलेक्ट्रॉन जोड़े का प्रतिनिधित्व करने के लिए परमाणुओं के बीच रेखाओं को जोड़ते हुए इलेक्ट्रॉन बिंदु की परिकल्पना का विस्तार करती हैं। लुईस संरचनाएं प्रत्येक परमाणु और उसके रासायनिक प्रतीक का उपयोग करके अणु की संरचना में उसकी स्थिति विखाती हैं।

लाइनें उन परमाणुओं के बीच खींची जाती हैं जो एक दूसरे से अबंधित होते हैं। (रेखाओं के स्थान पर बिन्दुओं का उपयोग भी किया जा सकता है।