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1. INTRODUCTION 

In the previous module you have learnt about the dual character of electromagnetic 

radiations, photoelectric effect and the line spectrum of hydrogen atom. On the basis of 

these observations, Bohr proposed a model for the structure of atom which could explain 

the line spectrum of hydrogen like species which you will study in this module. 

 

2. BOHR’S MODEL FOR HYDROGEN ATOM 

Neils Bohr (1913) was the first to explain quantitatively the general features of hydrogen 

atom structure and its spectrum. Though the theory is not the modern quantum 

mechanics, it can still be used to rationalize many points in the atomic structure and 

spectra. Bohr’s model for hydrogen atom is based on the following postulates: 

i) The electron in the hydrogen atom can move around the nucleus in a circular path of fixed 

radius and energy. These paths are called orbits, stationary states or allowed energy 

states. These orbits are arranged concentrically around the nucleus. 

ii) The energy of an electron in the orbit does not change with time. However, the electron 

will move from a lower stationary state to a higher stationary state when required amount 

of energy is absorbed by the electron or energy is emitted when electron moves from 

higher stationary state to lower stationary state. The energy change does not take place in 

a continuous manner. 

 

Angular Momentum 

Just as linear momentum is the product of mass (m) and linear velocity (v), angular momentum is 

the product of moment of inertia (I) and angular velocity (ω). For an electron of mass me, moving 

in a circular path of radius r around the nucleus, 

angular momentum = I × ω 

Since I = mer
2
 , and ω = v/r where v is the linear velocity, 

angular momentum = mer
2
 × v/r  = mevr 

 

iii) The frequency of radiation absorbed or emitted when transition occurs between two 

stationary states that differ in energy by ∆E, is given by : 

𝜈 =
𝛥𝐸

ℎ
=

𝐸2−𝐸1

ℎ
              (1)  



Where E1 and E2 are the energies of the lower and higher allowed energy states 

respectively. This expression is commonly known as Bohr’s frequency rule. 

 

iv) The angular momentum of an electron in a given stationary state can be expressed as in 

equation (2) 

 𝑚𝑒𝑣𝑟 = 𝑛
ℎ

2π
                  (2) 

 n = 1, 2, 3..... 

Thus an electron can move only in those orbits for which its angular momentum is integral 

multiple of h/2π that is why only certain fixed orbits are allowed. 

The details regarding the derivation of energies of the stationary states used by Bohr, are 

quite complicated and will be discussed in higher classes. However, according to Bohr’s 

theory for hydrogen atom: 

a) The stationary states for electron are numbered n = 1,2,3.......... These integral numbers 

are known as Principal quantum numbers. 

b) The radii of the stationary states are expressed as : 

rn = n
2 

a0                     (3)  

where a0 = 52.9 pm. Thus the radius of the first stationary state (n =1), called the Bohr orbit, 

is 52.9 pm. Normally the electron in the hydrogen atom is found in this orbit. As n increases 

the value of r will increase. In other words, as n increases, the electron will be present away 

from the nucleus. 

c) The most important property associated with the electron, is the energy of its stationary 

state. It is given by the expression. 

𝐸𝑛 = −𝑅𝐻  
1

𝑛2
           (4) 

 n = 1,2,3....  

where RH is called Rydberg constant and its value is 2.18×10
–18 

J. The lowest state ( n =1) is 

called as the ground state. Its energy is equal to 

 E1 = –2.18×10
–18 

1

12
 = –2.18×10

–18
J.  

The energy of the stationary state for n = 2, will be  

 E2 = –2.18×10
–18

J  
1

22
 = –0.545×10

–18 
J.  

Fig. 1 depicts the energies of different stationary states or energy levels of hydrogen atom. 

This representation is called an energy level diagram. 



 
Fig. 1 Transitions of the electron in the hydrogen atom 

(The diagram shows the Lyman, Balmer and Paschen series of transitions) 
 

What does the negative electronic energy (En) for hydrogen atom mean? 

The energy of the electron in a hydrogen atom has a negative sign for all possible orbits. 

What does this negative sign convey? This negative sign means that the energy of the 

electron in the atom is lower than the energy of a free electron at rest. A free electron at rest 

is an electron that is infinitely far away from the nucleus and is assigned the energy value of 

zero. Mathematically, this corresponds to setting n equal to infinity in the equation (4) so 

that E∞=0. As the electron gets closer to the nucleus (as n decreases), En becomes larger in 

absolute value and more and more negative. The most negative energy value is given 

by n=1 which corresponds to the most stable orbit. We call this the ground state. 

 

When the electron is free from the influence of nucleus, the energy is taken as zero. The 

electron in this situation is associated with the stationary state of Principal Quantum number,  

n = ∞ and the hydrogen atom is called as ionized hydrogen atom. When the electron, in n = 

∞, is attracted by the nucleus and goes in orbit n, the energy is emitted and therefore, the 



energy of electron is lowered. This is the reason for the presence of negative sign in equation 

(4) . It depicts the stability of electron relative to the reference state of zero energy and n = ∞. 

d) Bohr’s theory can also be applied to the ions containing only one electron, similar to that 

present in hydrogen atom, for example, He
+
, Li

2+
, Be

3+
. The energies of the stationary states 

associated with these kinds of ions (also known as hydrogen like species) are given by the 

expression. 

𝐸𝑛 = −2.18 × 10−18  
𝑍2

𝑛2
                   (5) 

and radii by the expression 

𝑟𝑛 =
52.9 𝑛2 

𝑍
pm                    (6) 

where Z is the atomic number and has values 2 and 3 for the helium and lithium atoms 

respectively. From the above equations, it is evident that the value of energy becomes more 

negative and that of radius becomes smaller with increase of Z. This means that electron will 

be tightly bound to the nucleus. 

e) It is also possible to calculate the velocities of electrons moving in these orbits. Although 

the precise equation is not given here, qualitatively the magnitude of velocity of electron 

increases with increase of positive charge on the nucleus and decreases with increase of 

principal quantum number. 

 

2.1. Explanation of Line Spectrum of Hydrogen 

Line spectrum observed in case of hydrogen atom can be explained quantitatively using 

Bohr’s model. According to assumption 2, radiation (energy) is absorbed if the electron 

moves from the orbit of smaller Principal quantum number to the orbit of higher Principal 

quantum number, whereas the radiation (energy) is emitted if the electron moves from higher 

orbit to lower orbit. The energy gap between the two orbits is given by equation (7) 

∆E = Ef – Ei                  (7) 

Combining equations (4) and (7) 

Δ𝐸 =  
−𝑅𝐻

𝑛𝑓
2  −  

−𝑅𝐻

𝑛𝑖
2    (where ni and nf stand for initial orbit and final orbits) 

Δ𝐸 = 𝑅𝐻  
1

𝑛𝑖
2 −  

1

𝑛𝑓
2 = 2.18 × 10−18J  

1

𝑛𝑖
2 −  

1

𝑛𝑓
2            (8) 

The frequency (ν) associated with the absorption and emission of the photon can be evaluated 

by using equation (9) 

𝜈 =
Δ𝐸

ℎ
=

𝑅𝐻

ℎ
 

1

𝑛𝑖
2 −

1

𝑛𝑓
2                   (9) 

=
2.18×10−18 J

6.626 ×10−34 J s
 

1

𝑛𝑖
2 −

1

𝑛𝑓
2                   

=3.29 × 1015  
1

𝑛𝑖
2 −

1

𝑛𝑓
2 Hz                (10) 

and in terms of wavenumbers (𝜈 ) 

𝜈 =
𝜈

𝑐
=

𝑅𝐻

ℎ𝑐
 

1

𝑛𝑖
2 −

1

𝑛𝑓
2                  (11) 

=
3.29 × 1015 s−1

3 × 108ms−1
 

1

𝑛𝑖
2 −

1

𝑛𝑓
2  



 =1.09677 × 107  
1

𝑛𝑖
2 −

1

𝑛𝑓
2             (12) 

In case of absorption spectrum, nf > ni and the term in the parenthesis is positive and energy is 

absorbed. On the other hand in case of emission spectrum ni > nf , ∆ E is negative and energy 

is released. 

The expression (8) is similar to that used by Rydberg which was derived empirically using 

the experimental data available at that time. Further, each spectral line, whether in absorption 

or emission spectrum, can be associated to the particular transition in hydrogen atom. In case 

of a large number of hydrogen atoms, different possible transitions can be observed and thus 

leading to large number of spectral lines. The brightness or intensity of spectral lines depends 

upon the number of photons of same wavelength or frequency absorbed or emitted. 

Problem 1 

What are the frequency and wavelength of a photon emitted during a transition from n = 5 

state to the n = 2 state in the hydrogen atom? 

Solution 

Since ni = 5 and nf = 2, this transition gives rise to a spectral line in the visible region of the 

Balmer series. From equation (8) 

Δ𝐸 = 2.18 × 10−18 J  
1

52
−

1

22
  

     =−4.58 × 10−19J 

The negative sign indicates that the energy is released during the transition.  

The frequency of the photon (taking energy in terms of magnitude) is given by 

𝜈 =
Δ𝐸

ℎ
 

=
4.58 × 10−19J

6.626 × 10−34J s
 

 = 6.91×10
14

 Hz 

𝜆 =
𝑐

𝜈
=

3.0 × 108m s−1

6.91 × 1014 Hz
= 434nm 

 

Problem 2 

Calculate the energy associated with the first orbit of He
+
 . What is the radius of this orbit? 

Solution 

𝐸𝑛 =
− 2.18 × 10−18 J 𝑍2

𝑛2
atom−1 

For He
+
, n = 1, Z = 2 

𝐸𝑛 =
− 2.18 × 10−18J 22

12
= −8.72 × 10−18 J 

The radius of the orbit is given by equation (6) 

𝑟𝑛 =
 0.0529 nm 𝑛2

𝑍
 

Since n = 1, and Z = 2 

𝑟𝑛 =
 0.0529 nm 12

2
= 0.02645 nm 

 

2.2 Limitations of Bohr’s Model 



Bohr’s model of the hydrogen atom was no doubt an improvement over Rutherford’s nuclear 

model, as it could account for the stability and line spectra of hydrogen atom and hydrogen 

like ions (for example, He
+
, Li

2+
, Be

3+
). However, Bohr’s model was too simple to account 

for the following points. 

i. It fails to account for the finer details (doublet, that is two closely spaced lines) of the 

hydrogen atom spectrum which are observed by using sophisticated spectroscopic 

techniques.  

ii. This model is also unable to explain the spectrum of atoms other than hydrogen, for 

example, helium atom which possesses only two electrons.  

iii. Bohr’s theory was also unable to explain the splitting of spectral lines in the presence of 

magnetic field (Zeeman effect) or an electric field (Stark effect). 

iv. It could not explain the ability of atoms to form molecules by chemical bonds.  

In other words, taking into account the points mentioned above, one needs a better 

theory which can explain the salient features of the structure of complex atoms.  

3. TOWARDS QUANTUM MECHANICAL MODEL OF THE ATOM 

In view of the shortcoming of the Bohr’s model, attempts were made to develop a more 

suitable and general model for atoms. Two important developments which contributed 

significantly in the formulation of such a model were: 

1. Dual behaviour of matter, 

2. Heisenberg uncertainty principle. 

 

3.1 Dual Behaviour of Matter 

The French physicist, de Broglie in 1924 proposed that matter, like radiation, should also 

exhibit dual behaviour i.e., both particle and wavelike properties. This means that just as the 

photon has momentum as well as wavelength, electrons should also have momentum as well 

as wavelength. de Broglie, from this analogy, gave the following relation between 

wavelength (λ) and momentum (p) of a material particle. 

𝜆 =
ℎ

𝑚𝑣
=

ℎ

𝑝
                   (13) 

where m is the mass of the particle, v its velocity and p its momentum. de Broglie’s 

prediction was confirmed experimentally when it was found that an electron beam undergoes 

diffraction, which is a characteristic phenomenon of waves. This fact has been put to use in 

making of an electron microscope, which is based on the wavelike behaviour of electrons just 

as an ordinary microscope utilises the wave nature of light. An electron microscope is a 

powerful tool in modern scientific research because it achieves a magnification of about 15 

million times. 

It needs to be noted that according to de Broglie, every object in motion has a wave character. 

The wavelengths associated with ordinary objects are so short (because of their large masses) 

that their wave properties cannot be detected. The wavelengths associated with electrons and 

other subatomic particles (with very small mass) can however be detected experimentally. 

Results obtained from the following problems prove these points qualitatively. 

Problem 3 

What will be the wavelength of a ball of mass 0.1 kg moving with a velocity of 10 m s
–1

 ? 



Solution 

According to de Brogile equation (13) 

𝜆 =
ℎ

𝑚𝑣
=

6.626 × 10−34J s

 0.1 kg  10ms−1 
 

 = 6.626×10
–34

 m ( 1J = 1 kg m
2
 s

–2
) 

Problem 4 

The mass of an electron is 9.1×10
–31

 kg. If its K.E. is 3.0×10
–25

 J, calculate its wavelength. 

Solution 

Since K. E. = ½ mv
2
 

𝜈 =  
2K . E .

𝑚
 

 1 2  

=  
2 × 3.0 × 10−25kg m2s−2

9.1 × 10−31kg
  

 
= 812 m s

–1
 

𝜆 =
ℎ

𝑚𝑣
=

6.626 × 10−34J s

 9.1 × 10−31kg  812m s−1 
 

 = 8967 × 10
–10

 m = 896.7 nm 

Problem 5 

Calculate the mass of a photon with wavelength 3.6 Å. 

Solution 

λ = 3.6Å = 3.6 × 10
–10  

m 

Velocity of photon = velocity of light 

𝑚 =
ℎ

𝜆𝑣
=

6.626 × 10−34J s

 3.6 × 10−10m  3 × 108  ms−1 
 

 = 6.135 × 10
–29

 kg 

 

3.2 Heisenberg’s Uncertainty Principle 

Werner Heisenberg a German physicist in 1927, gave uncertainty principle which is the 

consequence of dual behaviour of matter and radiation. According to Heisenberg’s 

Uncertainty principle, it is impossible to determine simultaneously, the exact position and 

exact momentum (or velocity) of an electron. 

Mathematically, it can be given as in equation (14). 

Δ𝑥 × Δ𝑝𝑥 ≥
ℎ

4π
                   (14) 

or Δ𝑥 × Δ𝑚𝑣𝑥 ≥
ℎ

4π
 

or Δ𝑥 × Δ𝑣𝑥 ≥
ℎ

4π𝑚
 

where ∆x is the uncertainty in position and ∆px (or ∆vx) is the uncertainty in momentum (or 

velocity) of the particle. If the position of the electron is known with high degree of accuracy 

(∆x is small), then the velocity of the electron will be uncertain (∆vx is large). On the other 

hand, if the velocity of the electron is known precisely (∆vx is small), then the position of the 

electron will be uncertain (∆x will be large). Thus, if we carry out some physical 

measurements on the electron’s position or velocity, the outcome will always depict a fuzzy 

or blur picture. 

The uncertainty principle can be best understood with the help of an example. Suppose you 

are asked to measure the thickness of a sheet of paper with an unmarked metre stick. 



Obviously, the results obtained would be extremely inaccurate and meaningless. In order to 

obtain any accuracy, you should use an instrument graduated in units smaller than the 

thickness of a sheet of the paper. Similarly, in order to determine the position of an electron, 

we must use a meter stick calibrated in units of smaller than the dimensions of electron (keep 

in mind that an electron is considered as a point charge and is therefore, dimensionless). To 

observe an electron, we can illuminate it with “light” or electromagnetic radiation. The 

“light” used must have a wavelength smaller than the dimensions of an electron. The high 

momentum photons of such light  𝑝 =
ℎ

𝜆
 would change the energy of electrons on collision. 

In this process we, no doubt, would be able to calculate the position of the electron, but we 

would know very little about the velocity of the electron after the collision. 

 

3.3 Significance of Uncertainty Principle 

One of the important implications of the Heisenberg Uncertainty Principle is that it rules out 

existence of definite paths or trajectories of electrons and other similar particles. If the 

position of a body is known at a particular instant and if its velocity and the forces acting on 

it at that instant are also known, then the position of the body can be determined at a different 

instant. Therefore, it can be concluded that the position of an object and its velocity fixes its 

trajectory. Since for a sub-atomic object such as an electron, it is not possible to determine 

the position and velocity simultaneously at any given instant to an arbitrary degree of 

precision, it is not possible to talk of the trajectory of an electron. 

The effect of Heisenberg Uncertainty Principle is significant only for motion of 

microscopic objects and is negligible for that of macroscopic objects. This can be seen 

from the following examples. 

If uncertainty principle is applied to an object of mass, say about a milligram (10
–6 

kg), then 

Δ𝑥 × Δ𝑣𝑥 =
ℎ

4π𝑚
 

=
6.626 × 10−34 J s

4 × 3.1416 × 10−6kg
≈ 10−28 m2s−1  

The value of ∆v∆x obtained is extremely small and is insignificant. Therefore, one may say 

that in dealing with milligram-sized or heavier objects, the associated uncertainties are 

hardly of any real consequence. 

In the case of a microscopic object like an electron on the other hand, ∆v∆x obtained is much 

larger and such uncertainties are of real consequence. For example, for an electron having 

mass  of 9.11×10
–31 

kg., according to Heisenberg uncertainty principle, 

 

Δ𝑥 × Δ𝑣𝑥 =
ℎ

4π𝑚
 

 =
6.626 ×10−34 J s

4×3.1416 ×9.1×10−31 kg
= 10−4m2s−1 

 

It, therefore, means that if one tries to find the exact location of the electron, with an 

uncertainty of only 10
–8 

m, then the uncertainty ∆v in velocity would be 

 



10−4m2s−1

10−8m
≈ 104ms−1 

 

This is so large that the classical picture of electrons moving in Bohr’s orbits (fixed) cannot 

hold good. It, therefore, means that the precise statements of the position and 

momentum of electrons have to be replaced by the statements of probability, that the 

electron has at a given position and momentum. This is what happens in the quantum 

mechanical model of atom. 

 

Problem 6 

A microscope using suitable photons is employed to locate an electron in an atom within a 

distance of 0.1 Å. What is the uncertainty involved in the measurement of its velocity? 

Solution 

Δ𝑥 × Δ𝑣𝑥 =
ℎ

4π𝑚
 or  Δ𝑣 =

ℎ

4π Δ𝑥𝑚
 

 

Δ𝑣 =
6.626 × 10−34 J s

4 × 3.14 × 0.1 × 10−10 m × 9.11 × 10−31kg
 

= 0.579×10
7
 m s

–1
 (1J = 1 kg m

2
 s

–2
) 

= 5.79×10
6
 m s

–1
 

Problem 7 

A golf ball has a mass of 40g, and a speed of 45 m/s. If the speed can be measured within 

accuracy of 2%, calculate the uncertainty in the position. 

Solution 

The uncertainty in the speed is 2%, i.e., 

45 × 2

100
= 0.9 m s−1 

Using the equation  

Δ𝑥 =
ℎ

4π𝑚Δ𝑣
 

 =
6.626×10−34 J s

4×3.14×40g×10−3  kg g−1 0.9m s−1 
 

 = 1.46×10
–33

 m 

This is nearly ~ 10
18

 times smaller than the diameter of a typical atomic nucleus. As 

mentioned earlier for large particles, the uncertainty principle sets no meaningful limit to the 

precision of measurements. 

3.4 Reasons for the Failure of the Bohr Model 

One can now understand the reasons for the failure of the Bohr model. In Bohr model, an 

electron is regarded as a charged particle moving in well defined circular orbits about the 

nucleus. 

The wave character of the electron is not considered in Bohr model. Further, an orbit is a 

clearly defined path and this path can completely be defined only if both the position and the 

velocity of the electron are known exactly at the same time. This is not possible according to 

the Heisenberg uncertainty principle. Bohr model of the hydrogen atom, therefore, not only 

ignores dual behaviour of matter but also contradicts Heisenberg uncertainty principle. In 

view of these inherent weaknesses in the Bohr model, there was no point in extending Bohr 



model to other atoms. In fact an insight into the structure of the atom was needed which could 

account for wave-particle duality of matter and be consistent with Heisenberg uncertainty 

principle. This came with the advent of quantum mechanics.  

4. SUMMARY 

● Bohr postulated that electron moves around the nucleus in circular orbits in an atom. 

● For an atom, only certain orbits can exist and each orbit corresponds to a specific energy. 

● Bohr could explain the line spectrum of hydrogen atom or hydrogen like species but could not 

explain the spectra of multi-electron atoms. 

● Each spectral line in the spectrum can e associated to the transition of electron from one orbit 

to another.  

● de Broglie suggested that matter exhibits both particle and wave like properties and also gave 

an expression for the calculation of wavelength, called de Broglie wave equation. 

● Heisenberg’s uncertainty principle states that it is impossible to determine simultaneously, the 

exact position and exact velocity of an electron. 

 

 


